md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 

CIP -  Каталогизација у публикацији
Народна библиотека Србије, Београд
61
MD : Medical Data : medicinska revija = medical review / glavni i odgovorni urednik Dušan Lalošević. - Vol. 1, no. 1 (2009)- . - Zemun : Udruženje za kulturu povezivanja Most Art Jugoslavija ; Novi Sad : Pasterovo društvo, 2009- (Beograd : Scripta Internacional). - 30 cm

Dostupno i na: http://www.md-medicaldata.com. - Tri puta godišnje.

ISSN 1821-1585 = MD. Medical Data
COBISS.SR-ID 158558988


BILE ACIDS ANTIVIRAL EFFECT: ALONE AND IN COMBINATION WITH ANTIVIRAL DRUGS /

ANTIVIRUSNO DEJSTVO ŽUČNIH KISELINA: SAMOSTALNO I U KOMBINACIJI SA ANTIVIRUSNIM LEKOVIMA

Authors

 

Marko Koprivica 1,2, Ana Miljković 1,3

1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
2Institute of Public Health of Vojvodina, Novi Sad, Serbia
3Health Center of Novi Sad, Novi Sad, Serbia

 

UDK: 615.281.8


The paper was received / Rad primljen: 30.07.2024

Accepted / Rad prihvaćen: 23.11.2024.

 


Correspondence to:


Radojica V. Stolić
Svetozara Markovica 69
Kragujevac-34000, Serbia
e-mail: radojicastolic61@gmail.com

 

 

Abstract

 

 

Bile acids are organic compounds of significant physiological importance. They act as powerful biological detergents in the digestion of fats. The gallbladder stores approximately 4 grams of bile acid. These are activated through conjugation with amino acids or with coenzyme A.Bacterial flora metabolizes them into secondary bile acids when excreted into the small intestine. Bile acids also serve as carriers and enhancers of certain drugs. Antiviral drugs such as zidovudine, aciclovir and ribavirin are often found in pharmaceutical formulations in combination with bile acids and are extensively used. Bile acids themselves exhibit antiviral activity through several different mechanisms. They increse the absorption of the antiviral drug when taken orally in the same formulation.

 

Keywords:

bile acids, antiviral drugs, pharmaceutical formulations.

 

 

 

Sažetak

 

 

Žučne kiseline su organska jedinjenja koja imaju veliki fiziološki značaj. Deluju kao moćni biološki deterdženti u varenju masti. Žučna kesa skladišti oko 4 grama žučne kiseline. One se aktiviraju konjugacijom sa aminokiselinama ili sa koenzimom A. Bakterijska flora ih metaboliše u sekundarne žučne kiseline kada se izluče u tanko crevo. Žučne kiseline takođe služe kao nosioci i pojačivači određenih lekova. Antivirusni lekovi kao što su zidovudin, aciklovir i ribavirin se često nalaze u farmaceutskim formulacijama u kombinaciji sa žučnim kiselinama i intenzivno se koriste. Žučne kiseline same po sebi pokazuju antivirusnu aktivnost kroz nekoliko različitih mehanizama. Oni povećavaju apsorpciju antivirusnog leka kada se uzimaju oralno u istoj formulaciji..

 


Ključne reči:

žučne kiseline, antivirusni lekovi, farmaceutske formulacije.

 

 

 

 

References:

  1. Alwin A, Karst SM. The influence of microbiota-derived metabolites on viral infections. Curr Opin Virol. 2021;49:151-156. doi:10.1016/j.coviro.2021.05.006
  2. Vogt A, Wohlfart S, Urban S, Mier W. Medical Advances in Hepatitis D Therapy: Molecular Targets. Int J Mol Sci. 2022;23(18):10817. doi:10.3390/ijms231810817.
  3. Zakrzewicz D, Geyer J. Interactions of Na+/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem. 2023;404(7):673-690. doi:10.1515/hsz-2022-0345.
  4. Kosloski MP, Zhao W, Marbury TC, et al. Effects of Renal Impairment and Hemodialysis on the Pharmacokinetics and Safety of the Glecaprevir and Pibrentasvir Combination in Hepatitis C Virus-Negative Subjects. Antimicrob Agents Chemother. 2018;62(3):e01990-17. doi:10.1128/AAC.01990-17.
  5. Carreño V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther. 2014;39(2):148-162. doi:10.1111/apt.12562
  6. Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 2022;30(3):289-300. doi:10.1016/j.chom.2022.02.004
  7. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020-1032. doi:10.1136/gutjnl-2021-326789.
  8. Režen T, Rozman D, Kovács T, et al. The role of bile acids in carcinogenesis. Cell Mol Life Sci. 2022;79(5):243. doi:10.1007/s00018-022-04278-2.
  9. Farooqui N, Elhence A, Shalimar. A Current Understanding of Bile Acids in Chronic Liver Disease. J Clin Exp Hepatol. 2022;12(1):155-173. doi:10.1016/j.jceh.2021.08.017
  10. Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9(1):140. doi:10.1186/s40168-021-01101-1.
  11. Guo X, Okpara ES, Hu W, et al. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci. 2022;23(15):8343. doi:10.3390/ijms23158343.
  12. Thomas JP, Modos D, Rushbrook SM, Powell N, Korcsmaros T. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Front Immunol. 2022;13:829525. doi:10.3389/fimmu.2022.829525.
  13. Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol. 2022;548:111618. doi:10.1016/j.mce.2022.111618.
  14. Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174-1182. doi:10.1136/gutjnl-2020-323071.
  15. Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol. 2022;44(4):547-564. doi:10.1007/s00281-022-00935-7.
  16. Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne). 2019;10:204. doi:10.3389/fendo.2019.00204.
  17. Pavlović N, Goločorbin-Kon S, Ðanić M, et al. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol. 2018;9:1283. doi:10.3389/fphar.2018.01283.
  18. Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells. 2020;9(6):1486. doi:10.3390/cells9061486.
  19. Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol. 2022;322(4):G405-G420. doi:10.1152/ajpgi.00316.2021.
  20. Tenge VR, Murakami K, Salmen W, et al. Bile Goes Viral. Viruses. 2021;13(6):998. doi:10.3390/v13060998.
  21. Paganoni S, Hendrix S, Dickson SP, et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve. 2021;63(1):31-39. doi:10.1002/mus.27091.
  22. Harrison C. Bile-acid signalling in metabolic disease. Nature Reviews Drug Discovery. 2008;7(8):637.
  23. Csanaky IL, Lickteig AJ, Zhang Y, Klaassen CD. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and Applied Pharmacology 2020;403:115136. doi: 10.1016/j.taap.2020.115136.
  24. Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products?. FEBS J. 2021;288(12):3727-3745. doi:10.1111/febs.15727.
  25. Trauner M, Fuchs CD. Novel therapeutic targets for cholestatic and fatty liver disease. Gut. 2022;71(1):194-209. doi:10.1136/gutjnl-2021-324305
  26. Prichard DO, Bharucha AE. Recent advances in understanding and managing chronic constipation. F1000Res. 2018;7:F1000 Faculty Rev-1640.  doi:10.12688/f1000research.15900.1.
  27. Thompson RJ, Arnell H, Artan R, et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: a randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol. 2022;7(9):830-842. doi:10.1016/S2468-1253(22)00093-0.
  28. Raufman JP, Metry M, Felton J, Cheng K, Xu S, Polli J. A 19F magnetic resonance imaging-based diagnostic test for bile acid diarrhea. MAGMA. 2019;32(1):163-171. doi:10.1007/s10334-018-0713-9.
  29. Radun R, Trauner M. Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Semin Liver Dis. 2021;41(4):461-475. doi:10.1055/s-0041-1731707.
  30. Wagner M, Trauner M. Recent advances in understanding and managing cholestasis. F1000Res. 2016;5:F1000 Faculty Rev-705. doi:10.12688/f1000research.8012.1.
  31. Elnashar M, Vaccarezza M, Al-Salami H. Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches. Future Sci OA. 2020;7(3):FSO660. doi:10.2144/fsoa-2020-0105.
  32. Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells. 2021;10(2):400. doi:10.3390/cells10020400.
  33. Jiang Y, Li H, Song D, et al. Comparative Evidence for Intrahepatic Cholestasis of Pregnancy Treatment With Traditional Chinese Medicine Therapy: A Network Meta-Analysis. Front Pharmacol. 2021;12:774884. doi:10.3389/fphar.2021.774884.
  34. Hu M-M, Li S, Shu H-B, He W-R, Gao P, Yang Q, et al. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Research 2019;29(3):193-205–2
  35. Wang J, Flavell RA, Li H-B. Antiviral immunity: a link to bile acids. Cell research  2019;29(3):177–8.
  36. Iwata R, Mertens JC, Baur K, Frei P, Martin IV, Schmitt J, et al. The role of bile acid retention and a common polymorphism in the ABCB11 gene as host factors affecting antiviral treatment response in chronic hepatitis C. Journal of Viral Hepatitis 2011;18(11):768-778.
  37. Romano N, Fischer H, Rubio-Benito MM, Overtuf K, Sinha AK, Kumar V. Different dietary combinations of high/low starch and fat with or without bile acid supplementation on growth, liver histopathology, gene expression and fatty acid composition of largemouth bass, Micropterus salmoides. Comparative Biochemistry and Physiology, Part A. 2022;266. 
  38. Liu Y, Azad MAK, Zhu Q, Kong X, Yu Z. Dietary bile acid supplementation alters plasma biochemical and hormone indicators, intestinal digestive capacity, and microbiota of piglets with normal birth weight and intrauterine growth retardation. Frontiers in Microbiology 2022;13:1053128. doi:10.3389/fmicb.2022.1053128.
  39. Mörk L-M, Strom SC, Mode A, Ellis ECS. Addition of Dexamethasone Alters the Bile Acid Composition by Inducing CYP8B1 in Primary Cultures of Human Hepatocytes. Journal of Clinical and Experimental Hepatology 2016;6(2):87–93.
  40. Broeders EPM, Nascimento EBM, Havekes B, Brans B, Roumans KHM, Tailleux A, et al. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metabolism 2015;22(3):418–26.
  41. 41. Heianza Y, Zhou T, He H, Rood J, Clish CB, Bray GA, et al. Changes in bile acid    subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver international : official journal of the International Association for the Study of the Liver 2022;42(2):363–73. 
  42. Zhao A, Zhang X, Sandhu A, Edirisinghe I, Shukitt-Hale B, Burton-Freeman B. Polyphenol Consumption on Human Bile Acids Metabolism: Preliminary Data of Bile Acid Profiles in Human Biological Samples (P06-131-19). Current Developments in Nutrition 2019;3(Supplement 1).
  43. Lupton JR, Steinbach G, Wen Chi Chang, O’Brien BC, Wiese S, Stoltzfus CL, et al. Calcium Supplementation Modifies the Relative Amounts of Bile Acids in Bile and Affects Key Aspects of Human Colon Physiology. Journal of nutrition 1996;126(5):1421–8. 
  44. Chen HL, Wu SH, Hsu SH, Liou BY, Chen HL, Chang MH. Jaundice revisited: recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J Biomed Sci. 2018;25(1):75. doi:10.1186/s12929-018-0475-8.
  45. Petroni ML, Jazrawi RP, Pazzi P, et al. Ursodeoxycholic acid alone or with chenodeoxycholic acid for dissolution of cholesterol gallstones: a randomized multicentre trial. The British-Italian Gallstone Study group. Aliment Pharmacol Ther. 2001;15(1):123-128. doi:10.1046/j.1365-2036.2001.00853.x
  46. Chayrov RL, Stylos EK, Chatziathanasiadou MV, Chuchkov KN, Tencheva AI, Kostagianni AD, et al. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation. Amino acids 2018;50(8):1131–43. 
  47. Chuchkov K, Chayrov R, Hinkov A, Todorov D, Shishkova K, Stankova IG. Modifications on the heterocyclic base of ganciclovir, penciclovir, acyclovir - syntheses and antiviral properties. Nucleosides, Nucleotides & Nucleic Acids 2020;39(7):979–90.
  48. Tolle-Sander S, Lentz KA, Maeda DY, Coop A, Polli JE. Increased acyclovir oral bioavailability via a bile acid conjugate. Molecular pharmaceutics 2004;1(1):40–8. 
  49. Dalpiaz A, Fogagnolo M, Ferraro L, Beggiato S, Hanuskova M, Maretti E, et al. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. European journal of pharmaceutics and biopharmaceutics 2019;144:91–100.
  50. El-Din M, Eid M, Talaat W. Micellar liquid chromatographic determination of ribavirin, silybin, interferon α 2a, lamivudine, and ursodeoxycholic acid in dosage forms and biological fluids. Journal of Liquid Chromatography & Related Technologies 2014;37(13):1785–804.
  51. Kish P, Kim JS, Roessler B, Campbell S, Hilfinger J. Bile Acid Conjugates Improve the Oral Bioavailability of the Neurominidase Inhibitor Zanamivir. Antiviral research 2007;74(3):A45–6.
  52. Lv X, Wang P, Li C, Cheng S, Bi Y, Li X. Zanamivir-Cholesterol Conjugate: A Long-Acting Neuraminidase Inhibitor with Potent Efficacy against Drug-Resistant Influenza Viruses. Journal of medicinal chemistry 2021;64(23):17403–12.
  53. Ji C. Molecular factors and pathways of hepatotoxicity associated with HIV/SARS-CoV-2 protease inhibitors. International Journal of Molecular Sciences 2023;24(9):7938. 
  54. Huang L, Li S, Chen J, Zhu Y, Lan K, Zeng L, et al. Efficacy and safety of ursodeoxycholic acid in children with cholestasis: A systematic review and meta-analysis. PLoS ONE 2023;17(1):1–16.
  55. Yang X, Sun H, Zhang Z, et al. Antiviral effect of ginsenosides rk1 against influenza A virus infection by targeting the hemagglutinin 1-mediated virus attachment. Int J Mol Sci 2023;24(5):4967. doi:10.3390/ijms24054967.
  56. Mason AL, Lindor KD, Bacon BR, Vincent C, Neuberger JM, Wasilenko ST. Clinical trial: randomized controlled study of zidovudine and lamivudine for patients with primary biliary cirrhosis stabilized on ursodiol. Aliment Pharmacol Ther 2008;28(7):886-894. doi:10.1111/j.1365-2036.2008.03799.x.
  57. van Soest H, Renooij W, van Erpecum KJ. Clinical and basal aspects of anemia during antiviral therapy for hepatitis C. Ann Hepatol 2009;8(4):316-324.
  58. Häussinger D, Sies H. Abstracts of the 1st International Conference of Collaborative Research Center 974: liver damage and regeneration, November 15-16, 2013, Düsseldorf, Germany. Eur J Med Res 2014;19,(Suppl 1):I1-S29. doi:10.1186/2047-783x-19-s1-i1.
  59. Kong F, Saif LJ, Wang Q. Roles of bile acids in enteric virus replication. Anim Dis 2021;1(1):2. doi:10.1186/s44149-021-00003-x.
  60. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Frontiers in Life Science 2013;7:3-4, 112-122, DOI: 10.1080/21553769.2013.879925.
  61. B Shekhawat P, B Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017;7(3):260-280. doi:10.1016/j.apsb.2016.09.005.
  62. Neves AR, Correia-da-Silva M, Sousa E, Pinto M. Strategies to overcome heparins’ low oral bioavailability. Pharmaceuticals (Basel). 2016;9(3):37. doi:10.3390/ph9030037.
  63. Görög S. Recent advances in the analysis of steroid hormones and related drugs. Anal Sci. 2004;20(5):767-782. doi:10.2116/analsci.20.767.
  64. Setchell KD, Galzigna L, O’Connell N, Brunetti G, Tauschel HD. Bioequivalence of a new liquid formulation of ursodeoxycholic acid (Ursofalk suspension) and Ursofalk capsules measured by plasma pharmacokinetics and biliary enrichment. Aliment Pharmacol Ther 2005;21(6):709-721. doi:10.1111/j.1365-2036.2005.02385.x.
  65. Arab JP, Cabrera D, Arrese M. Bile Acids in Cholestasis and its Treatment. Ann Hepatol. 2017;16(Suppl. 1: s3-105.):s53-s57. doi:10.5604/01.3001.0010.5497
  66. Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol. 2018;9:1853. doi:10.3389/fimmu.2018.01853.
  67. Evangelakos I, Heeren J, Verkade E, Kuipers F. Role of bile acids in inflammatory liver diseases. Semin Immunopathol. 2021;43(4):577-590. doi:10.1007/s00281-021-00869-6.
  68. Jović J, Milijašević B, Vukmirović S, Vasović V, Mikov M, Mooranian A, et al. Pharmacokinetic and drug absorption profiles of the anti-hyperglycaemic agent gliclazide in oral tissue-targeted microcapsules in rats. Scripta Medica. 2020;51(1):15-20. doi: 10.5937/scriptamed51-25521.
  69. El Kamari V, Moser C, Hileman CO, et al. Lower Pretreatment Gut Integrity Is Independently Associated With Fat Gain on Antiretroviral Therapy. Clin Infect Dis. 2019;68(8):1394-1401. doi:10.1093/cid/ciy716.
  70. Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 2022;11(1):33. doi:10.1186/s40035-022-00307-z.
  71. Stegman JR, Badin JK, Biles KA, Etienne T, Fartash-Naini S, Gordon AD, et al. Volatile Acid-Solvent Evaporation (VASE): Molecularly Homogeneous Distribution of Acyclovir in a Bioerodable Polymer Matrix for Long-Term Treatment of Herpes Simplex Virus-1 Infections. Journal of Drug Delivery 2018; 2018:6161230. doi:10.1155/2018/6161230.
  72. Thakare RS, Patil SB. Formulation Development and Optimization of Floating Granules of Acyclovir by Melt Granulation Technique. Particulate Science & Technology 2015;33(3):301–7.
  73. Bhosale UV, Kusum Devi V, Jain N. Formulation and Optimization of Mucoadhesive Nanodrug Delivery System of Acyclovir. Journal of Young Pharmacists 2011;3(4):275–83. 
  74. Gaber DA, Alnwiser MA, Alotaibi NL, Almutairi RA, Alsaeed SS, Abdoun SA, et al. Design and optimization of ganciclovir solid dispersion for improving its bioavailability. Drug delivery 2022;29(1):1836–47. 
  75. Higuchi H, Gores GJ. Bile acid regulation of hepatic physiology: IV. Bile acids and death receptors. Am J Physiol Gastrointest Liver Physiol. 2003;284(5):G734-G738. doi:10.1152/ajpgi.00491.2002.
  76. Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, et al. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022;14(23):4950. 
  77. Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutrition & Metabolism 2022;19(1):1–27. 
  78. Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023;15(3):760. 
  79. Beaudoin JJ, Clemens L, Miedel MT, Gough A, Zaidi F, Ramamoorthy P, et al. The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury. International Journal of Molecular Sciences 2023;24(11):9692. 
  80. Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, et al. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022;283:121459. doi:10.1016/j.biomaterials.2022.121459. 
  81. Koprivica M, Bjelanović J. Vitamin D in the diet and its effects on the nervous system. Medicinski časopis. 2022;56(4):158-60. doi: 10.5937/mckg56-40957.
  82. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, et al. Vitamin D receptor as an intestinal bile acid sensor. (Reports). Science 2002;296(5571):1313.
  83. Kollitz EM, Zhang G. Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership. PLoS ONE 2016;11(12):e0168278. 
  84. Pols TWH, Puchner T, Korkmaz HI, Vos M, Soeters MR, de Vries CJM. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLoS ONE 2017;12(5):e0176715. 
  85. Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci 2019;20(5):1214. doi: 10.3390/ijms20051214.
  86. Makishima M, Ishizawa M, Kato S, Nishida S. Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. Journal of Nutritional Science and Vitaminology 2020;66(4):370. 
  87. Kusaczuk M. Tauroursodeoxycholate-Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells. 2019;8(12):1471. doi:10.3390/cells8121471.
  88. Migueres M, Lhomme S, Izopet J. Hepatitis A: Epidemiology, High-Risk Groups, Prevention and Research on Antiviral Treatment. Viruses. 2021;13(10):1900. doi:10.3390/v13101900.
  89. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354-367. doi:10.1007/s13346-019-00691-6.
  90. Paganoni S, Macklin EA, Hendrix S, et al. Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. N Engl J Med. 2020;383(10):919-930. doi:10.1056/NEJMoa1916945.
  91. Takagi H, Oka T, Shimoike T, Saito H, Kobayashi T, Takahashi T, et al. Human sapovirus propagation in human cell lines supplemented with bile acids. Proceedings of the National Academy of Sciences of the United States 2020;117(50):32078. 
  92. Xie Ran, Li Jiao, Zhang Hao, Wang LingMei, Huang ChengRong, Chen LiWen. Total serum bile acids predict therapy for HBeAg-negative chronic hepatitis B patients with borderline ALT and high HBV DNA. Journal of Infection in Developing Countries 2022;16(8):1336–42. 
  93. Zakrzewicz D, Geyer J. Multitasking Na+/Taurocholate Cotransporting Polypeptide (NTCP) as a Drug Target for HBV Infection: From Protein Engineering to Drug Discovery. Biomedicines. 2022;10(1):196. doi:10.3390/biomedicines10010196.
  94. Yan H, Wang C. Key Factors for „Fishing” NTCP as a Functional Receptor for HBV and HDV. Viruses. 2023;15(2):512. doi:10.3390/v15020512.
  95. Erken R, Andre P, Roy E, et al. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study. J Viral Hepat. 2021;28(12):1690-1698. doi:10.1111/jvh.13608.
  96. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47-64. doi:10.1007/s00253-016-8006-6.
  97. Deng F, Bae YH. Bile acid transporter-mediated oral drug delivery. J Control Release. 2020;327:100-116. doi:10.1016/j.jconrel.2020.07.034.
  98. Appelman MD, Wettengel JM, Protzer U, Oude Elferink RPJ, van de Graaf SFJ. Molecular regulation of the hepatic bile acid uptake transporter and HBV entry receptor NTCP. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(8):158960. doi:10.1016/j.bbalip.2021.158960.

PDF: 05 - Koprivica M. and Miljković A. MD-Medical Data 2024;16(3) 153-159.pdf

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu