md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 

CIP -  Каталогизација у публикацији
Народна библиотека Србије, Београд
61
MD : Medical Data : medicinska revija = medical review / glavni i odgovorni urednik Dušan Lalošević. - Vol. 1, no. 1 (2009)- . - Zemun : Udruženje za kulturu povezivanja Most Art Jugoslavija ; Novi Sad : Pasterovo društvo, 2009- (Beograd : Scripta Internacional). - 30 cm

Dostupno i na: http://www.md-medicaldata.com. - Tri puta godišnje.

ISSN 1821-1585 = MD. Medical Data
COBISS.SR-ID 158558988


THERAPEUTIC POTENTIAL OF MAGNESIUM IN COGNITIVE IMPAIRMENTS/

TERAPIJSKI POTENCIJAL MAGNEZIJUMA U KOGNITIVNIM OŠTEĆENJIMA

Authors

 

Bojan Batinić1, Vesna Pešić1

1Katedra za fiziologiju, Farmaceutski fakultet, Univerzitet u Beogradu, Vojvode Stepe 450, 11 221 Beograd, Srbija

 

UDK: 616.8-085.3:546.46
615.3.015:546.46


The paper was received / Rad primljen: 02.01.2019.

Accepted / Rad prihvaćen: 24.01.2019.

 


Correspondence to:


Bojan Batinić
Katedra za fiziologiju, Farmaceutski fakultet, Univerzitet u Beogradu
Adresa: Vojvode Stepe 450, 11221 Beograd, Srbija
Tel: +381 63 272 061
e-mail: bojan.batinic@pharmacy.bg.ac.rs

 

 

Sažetak

 

Oštećenja kognitivnih funkcija su u mnogim neurološkim oboljenjima povezana sa hroničnim ili akutnim deficitom magnezijuma u nervnom sistemu. Terapijski potencijal magnezijuma u unapređenju kognitivnih funkcija ispitivan je najviše u modelima Alchajmerove bolesti (AB), traumatične povrede mozga i starenja, ali i kod zdravih životinja. Povećanje koncentracije ovog bioelementa u mozgu eksperimentalnih životinja postignuto je primenom različitih jedinjenja poput Mg-treonata, Mg-sulfata i Mg-hlorida. Centralni efekti magnezijuma, opisani u pretkliničkim studijama, obuhvataju poboljšanje performansi u bihejvioralnim testovima učenja i memorije, kao i morfološke i funkcionalne promene na nivou neurona. U modelu AB, tretman magnezijumom je prevenirao pojavu amiloidnih plakova, redukovao gubitak neuronskih sinapsi i abnormalnosti dendrita. U modelu starenja doveo je do rekonfiguracije i povećanja funkcionalnosti sinapsi na pre- i postsinaptičkom nivou, kroz regulaciju oslobađanja neurotransmitera i ekspresije NMDA receptora, što se povezuje sa poboljšanjem memorije. I pored afirmativnih nalaza u pretkliničkim studijama, neuroprotektivni i prokognitivni efekti magnezijuma još uvek nisu ispitivani kod AB pacijenata ili zdravih subjekata sa kognitivnim oštećenjima.

 

 

Ključne reči:

Magnezijum, memorija, učenje, NMDA receptor

 

 

Abstract

 

Cognitive deficits in many neurological disorders are related to a chronic or acute lack of magnesium in the central nervous system. Therapeutic potential of magnesium in the improvement of cognitive functions has been investigated mostly in animal models of Alzheimer’s disease (AD), traumatic brain injury and aging, as well as in healthy animals. An increase of magnesium brain concentration in experimental animals has been achieved using different compounds such as Mg-threonate, Mg-sulfate and Mg-chloride. Central effects of magnesium, described in preclinical studies, include improvement of performances in different behavioral tests of learning and memory, as well as morphological and functional changes in neurons. In a model of AD, magnesium prevented the development of amyloid plaques, reduced the loss of neuronal synapses and diminished dendrite abnormalities. In aged animals, magnesium induced a reconfiguration of synapses and their functional improvements, by regulating the neurotransmitter release and the expression of NMDA receptors, which is related to memory improvement. Although preclinical studies provided affirmative results, the neuroprotective and procognitive effects of magnesium have not yet been investigated in AD patients or healthy humans with cognitive impairments.

 

Key words:

Magnesium, memory, learning, NMDA receptors

 

 

 

References:

 

  1. Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients. 2018; 10(6). pii: E730.
  2. Vink R. Magnesium in the CNS: recent advances and developments. Magnes Res. 2016; 29(3):95-101.
  3. Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci. 1998; 18(8):2954-61.
  4. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005; 438(7065):185-92.
  5. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997; 18(3):493-503.
  6. Li F, Tsien JZ. Memory and the NMDA Receptors. The New England  ournal of medicine. 2009; 361: 302-303.
  7. Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther. 2003; 97(1):55-85.
  8. Wang D, Jacobs SA, Tsien JZ. Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline. Expert Opin Ther Targets. 2014; 18(10):1121-30.
  9. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ. Genetic enhancement of learning and memory in mice. Nature. 1999; 401(6748):63-9.
  10. Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X. Genetic enhancement  of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One. 2009; 4(10):e7486.
  11. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A,  Zhao MG, Zhuo M, Tonegawa S, Liu G. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010; 65(2):165-77.
  12. Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer’s Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J Alzheimers Dis. 2018; 62(2):523-547.
  13. Hayashi Y, Nabeshima Y, Kobayashi K, Miyakawa T, Tanda K, Takao K, Suzuki H, Esumi E, Noguchi S, Matsuda Y, Sasaoka T, Noda T, Miyazaki J, Mishina M, Funabiki K, Nabeshima Y. Enhanced stability of hippocampal place representation caused by  reduced magnesium block of NMDA receptors in the dentate gyrus. Mol Brain. 2014; 7:44.
  14. Balmuș IM, Strungaru SA, Ciobica A, Nicoara MN, Dobrin R, Plavan G, Ștefănescu C. Preliminary Data on the Interaction between Some Biometals and Oxidative Stress Status in Mild Cognitive Impairment and Alzheimer’s Disease Patients. Oxid Med Cell Longev. 2017;2017:7156928.
  15. Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ. Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res. 2011; 24(3):S115-21.
  16. Vural H, Demirin H, Kara Y, Eren I, Delibas N. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J Trace Elem Med Biol. 2010; 24(3):169-73.
  17. Lemke MR. Plasma magnesium decrease and altered calcium/magnesium ratio in severe dementia of the Alzheimer type. Biol Psychiatry. 1995; 37(5):341-3.
  18. Veronese N, Zurlo A, Solmi M, Luchini C, Trevisan C, Bano G, Manzato E, Sergi  G, Rylander R. Magnesium Status in Alzheimer’s Disease: A Systematic Review. Am J Alzheimers Dis Other Demen. 2016; 31(3):208-13.
  19. Boström F, Hansson O, Gerhardsson L, Lundh T, Minthon L, Stomrud E, Zetterberg H, Londos E. CSF Mg and Ca as diagnostic markers for dementia with Lewy bodies. Neurobiol Aging. 2009; 30(8):1265-71.
  20. Andrási E, Igaz S, Molnár Z, Makó S. Disturbances of magnesium concentrations  in various brain areas in Alzheimer’s disease. Magnes Res. 2000; 13(3):189-96.
  21. Cilliler AE, Ozturk S, Ozbakir S. Serum magnesium level and clinical deterioration in Alzheimer’s disease. Gerontology. 2007; 53(6):419-22.
  22. Corsonello A, Pedone C, Pahor M, Malara A, Carosella L, Mazzei B, Onder G, Corsonello F, Carbonin P, Corica F; Gruppo Italiano di Farmacovigilanza nell’Anziano (GIFA). Serum  magnesium levels and cognitive impairment in hospitalized hypertensive patients. Magnes Res. 2001; 14(4):273-82.
  23. Guran T, Arman A, Akcay T, Kayan E, Atay Z, Turan S, Bereket A. Cognitive and  psychosocial development in children with familial hypomagnesaemia. Magnes Res. 2011; 24(1):7-12.
  24. Hoane MR. Assessment of cognitive function following magnesium therapy in the  traumatically injured brain. Magnes Res. 2007; 20(4):229-36.
  25. Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma. J Biol Chem. 1988; 263(2):757-61.
  26. Sun Q, Weinger JG, Mao F, Liu G. Regulation of structural and functional synapse density by L-threonate through modulation of intraneuronal magnesium concentration. Neuropharmacology. 2016; 108:426-39.
  27. Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, Li XG, Huang RX, Gao D, Li MZ, Zhang Y, Liu GP, Wang JZ. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One. 2014; 9(9):e108645.
  28. Ditor DS, John SM, Roy J, Marx JC, Kittmer C, Weaver LC. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. J Neurosci Res. 2007; 85(7):1458-67.
  29. Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther. 2016; 22(10):854-9.
  30. Lee JH, Roy J, Sohn HM, Cheong M, Liu J, Stammers AT, Tetzlaff W, Kwon BK. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Spine (Phila Pa 1976). 2010; 35(23):2041-8.
  31. Kwon BK, Roy J, Lee JH, Okon E, Zhang H, Marx JC, Kindy MS. Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotrauma. 2009; 26(8):1379-93.
  32. Đurić V, Batinić B, Petrović J, Stanić D, Bulat Z, Pešić V. A single dose of magnesium, as well as chronic administration, enhances long-term memory in novel  object recognition test, in healthy and ACTH-treated rats. Magnes Res. 2018; 31(1):24-32.
  33. Malm T, Koistinaho J, Kanninen K. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer’s Disease: Focus on Gene Therapy and Cell-Based Therapy Applications. Int J Alzheimers Dis. 2011; 2011:517160.
  34. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Ren C, Liu XG, Chui D, Liu G. Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain. 2014; 7:65.
  35. Huang Y, Huang X, Zhang L, Han F, Pang KL, Li X, Shen JY. Magnesium boosts the memory restorative effect of environmental enrichment in Alzheimer’s disease mice. CNS Neurosci Ther. 2018; 24(1):70-79.
  36. Kotermanski SE, Johnson JW. Mg2+ imparts NMDA receptor subtype selectivity to  the Alzheimer’s drug memantine. J Neurosci. 2009; 29(9):2774-9.
  37. Young JM, Hoane MR. Magnesium administration after experimental traumatic brain injury improves decision-making skills. Brain Res Bull. 2018; 139:182-189.
  38. Hoane MR. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor Neurol Neurosci. 2005;23(2):67-77.
  39. Petrović J, Stanić D, Bulat Z, Puškaš N, Labudović-Borović M, Batinić B, Mirković D, Ignjatović S, Pešić V. Acth-induced model of depression resistant to  tricyclic antidepressants: Neuroendocrine and behavioral changes and influence of long-term magnesium administration. Horm Behav. 2018; 105:1-10.
  40. Kitamura Y, Araki H, Gomita Y. Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav. 2002; 71(1-2):63-9.
  41. 41, Huenges Wajer IMC, Dorhout Mees SM, van den Bergh WM, Algra A, Visser-Meily JMA, Rinkel GJE, van Zandvoort MJE. Effect of magnesium on cognition after aneurysmal subarachnoid haemorrhage in a randomized trial. Eur J Neurol. 2018; 25(12):1486-1489.
  42. Mathew JP, White WD, Schinderle DB, Podgoreanu MV, Berger M, Milano CA, Laskowitz DT, Stafford-Smith M, Blumenthal JA, Newman MF; Neurologic Outcome Research Group (NORG) of The Duke Heart Center. Intraoperative magnesium administration does not improve neurocognitive function after cardiac surgery. Stroke. 2013; 44(12):3407-13.


PDF Batinić B. and Pešić V. • MD-Medical Data 2019;11(1): 023-027

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu