md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 

CIP -  Каталогизација у публикацији
Народна библиотека Србије, Београд
61
MD : Medical Data : medicinska revija = medical review / glavni i odgovorni urednik Dušan Lalošević. - Vol. 1, no. 1 (2009)- . - Zemun : Udruženje za kulturu povezivanja Most Art Jugoslavija ; Novi Sad : Pasterovo društvo, 2009- (Beograd : Scripta Internacional). - 30 cm

Dostupno i na: http://www.md-medicaldata.com. - Tri puta godišnje.

ISSN 1821-1585 = MD. Medical Data
COBISS.SR-ID 158558988


THE PRESENCE OF TITANIUM DIOXIDE (TiO2) IN SUNSCREEN PREPARATIONS ON THE SERBIAN MARKET /
ZPRISUSTVO TITAN DIOKSIDA (TIO2 ) U PREPARATIMA ZA ZAŠTITU OD SUNCA NA SRPSKOM TRŽIŠTU

Authors

 

Emilija Kostić1,2, Maja Vujović1,2

1Zavod za sudsku medicinu Niš
2Medicinski fakultet, Univerzitet u Nišu

 

UDK: 665.584:661.882'022-14(497.11)


The paper was received / Rad primljen: 21.10.2018.

Accepted / Rad prihvaćen: 28.10.2018

 


Correspondence to:


Emilija Kostić
Univerzitet u Nišu, Medicinski fakultet
Zavod za sudsku medicinu
Bulevar dr Zorana Đinđića 81,
18000 Niš
e-mail: emilija293@gmail.com

 

 

Abstract

 

Nowadays, sunscreens are increasingly used worldwide to protect skin from UV radiation and prevent skin cancer. TiO2 and TiO2 nanoparticles (NPs) are the most commonly used in these preparations as physical blockers. There are studies that indicate that TiO2 and TiO2 NPs from sunscreen preparations can cause production ROS in vivo, which can cause cytotoxicity and genotoxicity. The largest number of studies show that there is no significant penetration of TiO2 and TiO2 NPs through healthy skin. Therefore, in this survey, content of TiO2 and TiO2 NPs in sunscreens on the Serbian market, was analyzed. There is a large number of preparations with different SPF (sun protection factor), and most have a SPF higher than 30. In preparations with SPF higher than 30, most commonly are physical blockers (TiO2 and TiO2 NPs) 63%, while in preparations with SPF less than 30, this percentage is twice as low. In the products of domestic manufacturers, the most common is TiO2, unlike the European manufacturers, where TiO2 NPs are mainly used. In sunscreens for children, there are at least TiO2 NPs, which is especially important because studies have shown that resorption is increased through sensitive and damaged skin.

 

 

Keywords:

sunscreens, TiO2, TiO2 NPs, Serbian market

 

 

Sažetak

 

Danas se u svetu sve više koriste preparati za sunčanje koji štite kožu od UV zračenja i njegovih eventualnih štetnih posledica. U tim preparatima od fizičkih blokatora najzastupljeniji su TiO2 i TiO2 u obliku nanočestica (nanoparticles-NPs). Postoje studije koje ukazuju da TiO2 i TiO2 NPs iz preparata za sunčanje, mogu izazvati produkciju oksidativnih radikala in vitro, a oni mogu uzrokovati citotoksičnost i genotoksičnost. Najveći broj studija pokazuje da nema značajne resorpcije TiO2 i TiO2 NPs kroz zdravu kožu. Izvršena je analiza podataka o njihovom sadržaju u preparatima za sunčanje na trzištu Srbije. Postoji veliki broj preparata za sunčanje sa različitim SPF (sun protection factor), a najveći broj ima SPF veći od 30. Kod preparata sa SPF većim od 30, najčešći su fizički blokatori (TiO2 i TiO2 NPs) 63%, dok je u preparatima sa SPF manjim od 30, ovaj procenat dvostruko manji. U proizvodima domaćih proizvođača najčešće se nalazi TiO2, za razliku od proizvođača iz Evrope, gde se uglavnom koriste TiO2 NPs. U sredstvima za sunčanje za decu ima najmanje preparata koji sadrže TiO2 NP, što je posebno važno, jer su studije pokazale da je resorpcija nanočestica povećana kroz osetljivu, oštećenu i obolelu kožu.

 

 

Ključne reči:

preparati za sunčanje, TiO2, TiO2 NPs, srpsko tržište

 

 

References:

 

  1. Norval M, Lucas RM, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, et al. The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Science 2011; 10(2):199–225.
  2. de Gruijl FR. Adverse effects of sunlight on the skin. Nederlands Tijdschrift Voor Geneeskunde 1998  21;142(12):620–5.
  3. Lehmann P. Sun exposed skin disease Clinical Dermatology 2011;29(2):180–8.
  4. Van der Pols JC, Williams GM, Pandeya N, Logan V, Green AC. Prolonged Prevention of Squamous Cell Carcinoma of the Skin by Regular Sunscreen Use. Cancer Epidemiology & Biomarkers Prevention 2006; 15(12):2546–8.
  5. Green A, MacLennan R, Siskind V. Common acquired naevi and the risk of malignant melanoma International Journal of Cancer. 1985 Mar 15; 35(3):297–300.
  6. Burnett ME, Wang SQ. Current sunscreen controversies: a critical review  Photoderma­tology, Photoimmunology & Photomedicine. 2011; 27(2):58–67.
  7. Dransfield GP. Inorganic Sunscreens Radiation Protection Dosimetry. 2000; 91(1):271–3.
  8. Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD Sunscreens—what’s important to know. Journal of the European Academy of Dermatology and Venereology  2008 ; 22(9):1110–8.
  9. Robertson TA, Sanchez WY, Roberts MS. Are commercially available nanoparticles safe when applied to the skin? Journal of  Biomedical Nanotechnology 2010; 6(5):452–68.
  10. Gasparro FP, Mitchnick M, Frank Nash J. A Review of Sunscreen Safety and Efficacy. Journal of Photochemistry & Photobiology 1998; 68(3):243–56.
  11. Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness Nanotechnology, Science & Appliication, 2011; 13;4:95–112.
  12. Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics Journal of Drug Delivery Science and Technology , 2009;19(6):371–84.
  13. Durán N, Guterres SS, Alves OL. Nanotoxicology: Materials, Methodologies, and Assessments. Springer Science & Business Media; 2013. 411 p.
  14. Website [Internet]. [cited 2018 Jul 31]. Available from: ​Nano Science Institute. Scientific Committee Rules on the Safety of Nanocosmetics. [Last accessed on 2008]. Available from: http://www.nanoscienceinstitute.com/NanoCosmetics.htm .
  15. Skin Cancer Foundation. Skin Cancer Foundation. (2007). iVillage Survey Results from May 2007. Available at: http://www.skincancer.org/ivillage-survey-results.html. Accessed October 29, 2009 [Internet]. 2007 [cited 2007 May]. Available from: http://www.skincancer.org/ivillage-survey-results.html.
  16. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study Toxicological Science, 2011;123(1):264–80.
  17. International Cooperation on Cosmetic Regulation. Report of the ICCR Joint Ad Hoc Working Group on Nanotechnology in Cosmetic Products: Criteria and Methods of Detection - ICCR-4. 2010.
  18. International Organization of Standards, Geneva, Switzerland. Nanotechnologies–guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. 2012.
  19. FDA. Guidance for industry safety of nanomaterials in cosmetic products [Internet]. 2014 http://www.fda.gov/downloads/Cosmetics/GuidanceRegulation/GuidanceDocuments/UCM 300932.pdf
  20. Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges Journal of Pharmacy & Bioallied Sciences, 2012;4(3):186–93.
  21. Li YR, Robert Li Y, Trush M. Defining ROS in Biology and Medicine. Reactive Oxygen Species [Internet]. 2016;1(1). Available from: ​http://dx.doi.org/10.20455/ros.2016.803
  22. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells Toxicology In Vitro. 2011;25(1):231–41.
  23. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data Part Fibre Toxicology. 2013;10(1):15.
  24. Pinheiro T, Pallon J, Alves LC, Veríssimo A, Filipe P, Silva JN, et al. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin Nuclear Instruments and Methods in Physics Research Section B. 2007;260(1):119–23.
  25. Jaeger A, Weiss DG, Jonas L, Kriehuber R. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology. 2012; 296(1-3):27–36.
  26. Fink E. Repeat photopatch test for photoxicity and photoallergy of HR 96/104702 and HR 96/104702 VeK in healthy adult male and female volunteers, part 1. Company Study No: 9066/lib. 1997;
  27. Chan J, Ying T, Guang YF, Lin LX, Kai T, Fang ZY, et al. In Vitro Toxicity Evaluation of 25-nm Anatase TiO2 Nanoparticles in Immortalized Keratinocyte Cells Biological Trace Element  Research 2011;144(1-3):183–96.
  28. 28.Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, et al. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations Nanotoxicology. 2010; 4:364–81.
  29. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity Biomedical Research International. 2013:942916.


PDF Kostić E. and Vujović M. • MD-Medical Data 2018;10(4): 173-177

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu