md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 


GLIOZA PINEALNE ŽLEZDE KOD ČOVEKA TOKOM STARENJA
GLIOSIS OF PINEAL GLAND IN HUMANS DURING AGING

Authors

 

Milan Popović1, Valerija Munteanu2, Dejan Miljković1, Aleksandra Rakovac3, Dušan Vapa4, Dušan Lalošević1,5, Ivan Čapo1
1 Katedra za histologiju i embriologiju, Medicinski Fakultet, Univerzitet u Novom Sadu
2 Klinika za radiologiju, Klinički centar Vojvodine, Novi Sad
3 Katedra za fiziologiju, Medicinski fakultet, Univerzitet u Novom Sadu
4 Katedra za sudsku medicinu, Medicinski fakultet, Univerzitet u Novom Sadu
5 Pasterov Zavod, Novi Sad


 

• Rad je primljen 14.12.2016 ./ Prihvaćen 22.12.2016.

 

 

Correspondence to:
Dr Milan Popović
Katedra za histologiju i embriologiju, Medicinski fakultet, Univerzitet u Novom Sadu
Hajduk Veljkova 3, 21000 Novi Sad
e-mail: milan.popovic@mf.uns.ac.rs

 

 

Abstract

 

Introduction: The pineal gland represents a neuroendocrine organ. Gland parenchyma is composed of higher percentage of pinealocytes and about 5% of glial cells. Earlier studies showed that there is reduced cellularity of gland, gliosis and higher percentage of calcification during aging in addition to increased accumulation of pigments in pinealocytes.
Aim: Aim of this study was to monitor the expression of marker S-100β in tissue of human pineal gland, as well as identification of differences in expression of the same marker depending on the sex and according to age.
Material and Methods: The study included 26 samples which were divided into two groups: group I (n=13) included the pineal glands of people younger than 50 years and group II (n=13) pineal glands of people older than 50 years. After histological processing of samples, sections were stained with hematoxylin-eosin stain and immunohistochemically with anti - S-100β antibody. The number of glial cells of the pineal gland was determined, also with the total number of cells per unit area. In data processing we used Mann-Whitney test and statistically significant value was considered p<0,05.
Results: There was an increased total number of cells per unit area in people younger than 50 years. Percentage of glial cells was increased in people older than 50 years.
Conclusion: The glial cells of the human pineal gland showed S-100β positive staining. During aging the percentage of human glial cells was increased, while pineal parenchyma in younger people was more cellular.

 

Key words

pineal gland, glial cells, aging, S-100β

 

 

References

 

  1. Scharenberg K, Liss L. The histologic structure of the human pineal body. Progress in brain research. 1964;10:193-217.
  2. Erlich S, Apuzzo M. The pineal gland: anatomy, physiology, and clinical significance. Journal of neurosurgery. 1985;63(3):321-41.
  3. Ross MH, Pawlina W. Histology: a text and atlas with correlated cell and molecular biology. 5th ed. Baltimore: Lippincott Williams & Wilkins; 2006. p. 698-700.
  4. Junqueira LC, Carneiro J. Basic histology: text & atlas. 10th ed. USA:McGraw-Hill Companies; 2003. p. 430.).
  5. Møller M, Baeres F M. M. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res (2002) 309:139–150.
  6. Arendt J. Melatonin. Clinical endocrinology, 1988, 29,2: 205-229.
  7. Reiter RJ. The ageing pineal gland and its physiological consequences. Bioessays, 1992;14: 169–175;
  8. Regodón S, Franco A, Masot J, Redondo E. Structure of the ovine pineal gland during prenatal development. J Pineal Res. 1998; 25:229–239.
  9. Calvo J, Boya J. Postnatal development of cell types in the rat pineal gland. Journal of Anatomy. 1983;137(Pt 1):185-195.
  10. Stein BM, Fetell MR, Duffy PE. Immunocytochemistry of pineal astrocytes: species differences and functional implications. JNEN 1985, 44 (5) 486-495.
  11. Shimada H. Ultrastructural study of the human pineal gland in aged patients including a centenarian. Actapathologica japonica. 1990;40(1):31.
  12. Galliani I, Frank F, Gobbi P, Giangaspero F, Falcieri E. Histochemical and ultrastructural study of human pineal gland in the course of aging. J Submicrosc Cytol Pathol. 1989;21(3):571-8.
  13. Koshy S, Vettivel S. Melanin pigment in human pineal gland. J Anat Soc India. 2001;50:122-6.
  14. Tapp E, Huxley M. The histological appearance of the human pineal gland from puberty to old age. J Patho. l1972;108:137-44.
  15. Hasegawa A, Ohtsubo K, Mori W. Pineal gland in old age; quantitative and qualitative morphological study of 168 human autopsy cases. Brain Res 1987;409:343-9.
  16. Møller M, Ingild A, BockE. Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res1978;140:1-13.
  17. Huang SK, Nobiling R, Schachner M, Taugner PDR. Interstitial and parenchymal cells in the pineal gland of the golden hamster. Cell and tissue research, 1984;235(2):327-337.
  18. Esteban G, Muñoz MI, Carbajo S, Carvajal JC, Alvarez-Morujo AJ, Barragán, LM. Pineal gliosis and gland ageing. The possible role of the glia in the transfer of melatonin from pinealocytes to the blood and cerebrospinal fluid. Eur J Anat. 2008;  12(1):97-114.
  19. Moore BW. A soluble protein characteristic of the nervous system. Bioehem. biophys. Res. Commu H.. 1965;19:739-744.
  20. Hyden H, McEwen BS. A glial protein specific for the nervous system. Proc. nat. Aead. Sei.(Wash.). 1966;55:354-8.
  21. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003; 60:540-551.
  22. Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia. 2008;12(4):198-204.
  23. Wildi R, Frauchiger E. Modifications histologiques de l'epiphyse humaine pendant I'enfance, l'age adulte et Ie vieillissement. Prog. Brain Res. 1965;10:218-223.
  24. Trentini GP, De Gaetani EF, Pierini G, Criscuolo M, Vidyasagar RJ, Fabbri F. Some aspects of human pineal pathology. In: Reiter R.J., Karasek M. (Eds.), Advances in pineal research: 1. John Libbey, London-Paris, 1986, pp. 219-229.
  25. Khavinson, VK, Linkova NS. Morphofunctional and molecular bases of pineal gland aging. Human Physiology. 2001;38(1):101-107.
  26. Tapp E. The Human Pineal Gland in Malignancy. J. Neural Transmission. 1980;48:119—129.
  27. Horanyi  B. Das corpus pineale im senium. Wnr. Zeitschr. Nervenheilk. 1960;16:129-139.
  28. Boya J. ,Calvo J. Structure and ultrastructure of the aging rat pineal gland. J. Pineal Res. 1984;1:83-89,
  29. Singh R, Ghosh S, Joshi A, Haldar C. Human pineal gland: Histomorphological study in different age groups and different causes of death. Journal of the Anatomical Society of India. 2014;30:1-5
  30. Papasozomenos, SC. Glial fibrillary acidic (GFA) protein-containing cells in the human pineal gland. Journal of Neuropathology & Experimental Neurology.1983;42(4):391-408
  31. Bastianelli E, Pochet R. Calbindin‐D28k, calretinin, and S-100 immunoreactivities in rat pineal gland during postnatal development. Journal of pineal research. 1995;18(3):127-134.
  32. Borregón A, Boya J, Calvo JL, López-Muñoz F. Immunohistochemical study of the pineal glial cells in the postnatal development of the rat pineal gland. Journal of pineal research. 1993;14(2):78-83.
  33. Suzuki T, Kachi T. Immunohistochemical studies on supporting cells in the adrenal medulla and pineal gland of adult rat, especially on S-100 protein, glial fibrillary acidic protein and vimentin. Kaibogaku zasshi. Journal of anatomy. 1995;70(2):130-139.
  34. Ebada, S. Morphological and Immunohistochemical Studies on the Pineal Gland of the Donkey (Equus asinus).  J. Vet. Anat. 2012;5(1):47-74.
  35. Yamane Y, Mena H, Nakazato Y. Immunohistochemical characterization of pineal parenchymal tumors using novel monoclonal antibodies to the pineal body. Neuropathology. 2002;22(2):66-76.

UDK: 615.015-053.2
613.25-053.2
COBISS.SR-ID 226160396



PDF Popović M. et al • MD-Medical Data 2016;8(4): 247-251

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu