md-medicaldata


Go to content

PRIMENA SKAFOLDA U STOMATOLOGIJI/

APPLICATION OF SCAFFOLDS IN DENTSTRY

Authors

 

Dragica Bulajić1, Jovana Drljača1, Aleksandra Rakovac2, Dejan Miljković3, Ivan Čapo3, Slobodan Sekulić4 , Branislav Bajkin5

1Univerzitet u Novom Sadu, Medicinski fakultet
2Univerzitet u Novom Sadu, Medicinski fakultet, Katedra za fiziologiju,
3Univerzitet u Novom Sadu, Medicinski fakultet, Katedra za histologiju i embriologiju,
4Univerzitet u Novom Sadu,Medicinski fakultet, Klinika za neurologiju, Klinički centar Vojvodine
5Univerzitet u Novom Sadu, Medicinski fakultet, Klinika za stomatologiju Vojvodine

 

UDK: 615.46:616.314


The paper was received / Rad primljen: 20.02.2019.

Accepted / Rad prihvaćen: 25.02.2019.

 


Correspondence to:


dr Dragica Bulajić
Univerzitet u Novom Sadu/Medicinski fakultet
Hajduk Veljkova 3, 21000 Novi Sad
Kontakt telefon: 064/ 3810866
e-mail: dragica.bulajic@uns.ac.rs

 

 

Sažetak

 

Materijali u tkivnom inženjeringu imaju dugu istoriju. Tradicionalno su za nadomešćavanje kosti korišćeni autogeni, alogeni, ksenogeni i aloplastični materijali.  Međutim, napreci u kliničkoj praksi su napravljeni, i to kao rezultat poboljšanja već postojećih materijala. Tkivno inženjerstvo podrazumeva zasejavanje ćelija na skafolde, i nakon kultivacije in vitro, implantaciju u telo kao zamenu za nedostajaće tkivo. Nakon toga nastupa proces regeneracije tkiva. Skafold omogućava ram i incijalnu podršku ćelijama da se pričvrste, proliferišu, diferentuju i stvore ekstracelularni matriks.  Veoma je poželjno da skafold imitira strukturu i svojstva humanog tkiva, kako bi se proces regeneracije i resorpcije odvijao sinhrono. Mnogo je faktora koji definišu dobar skafold, a neki od njih su poroznost, karakteristike površine, mehničke osobine, mogućnost inkorporacije ćelija i bioaktivnih molekula. U ovom radu, navedeni su skafoldi dostupni u klliničkom radu, istaknute su njhove prednosti i mane koje u budućnosti moraju da se poboljšaju.

 

 

Ključne reči:

skafoldi, tkivno inženjerstvo, polimeri, kompoziti, koštana regeneracija.

 

 

Abstract

 

Materials in tissue engineering have a long history. Traditionally, autogenic, allogenic, xenogenic and alloplastic materials have been used to replace bone defects, but advances in clinical practice have been made, as a result of the improvement of already existing materials. Tissue engineering  is actually planting cells on scaffolds, and after cultivation in vitro, implantation into the body as a substitute for the missing tissue. After that, the tissue regeneration process occurs. Scaffolds allow the frame and initial support for cells to attach, proliferate, deferent, and create an extracellular matrix. It is highly desirable for scaffold to imitate the structure and properties of human tissue, because process of regeneration and resorption process should be synchronously. There are many factors that define a good scaffold, like porosity, surface characteristics, mechanical properties, the ability to incorporate cells and bioactive molecules. The mentioned scaffolds are available in clinic work, and their advantages and disadvantages are highlight in this paper. All disadvantages need to be improved in the future..

 

Key words:

scaffolds,  tissue engineering, polymers, composites, bone regeneration

 

 

 

References:

 

  1. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003 May 13;100(10):5807-12.
  2. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-coglycolic acid). Acta Biomater. 2008 May;4(3):638-45.
  3. Williams D. Benefit and risk in tissue engineering. Mater Today. 2004 May;7:24-9.
  4. Mano J.F, Sousa R.A, Boesel L.F, Neves N.M, Reis R.L. Bioinert,biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004 May;64:789-817.
  5. Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J. Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm. 2004 September;58:385– 407.
  6. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998 January;13:94–117.
  7. Williams, D.F. On the mechanisms of biocompatibility. Biomaterials. 2008 July;29(20):2941–2953
  8. Olszta M.J, Cheng X, SooJee S, Kumar R, Kim Y.Y, Kaufman M.J, Douglas E.P, Gower L.B.  Bone structure and formation: A new perspective. Mater. Sci. Eng. R:Rep. 2007 November; 58:77–116
  9. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008 August; 26(8): 434–441.
  10. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010 January; 31(3):461–466.
  11. Woodard JR,  Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007 January; 28(1):45–54.
  12. Lichte P, Pape HC, Pufe T, Kobbe P, Fischeret H. Scaffolds for bone healing: concepts, materials and evidence. Injury. 2011 June; 42(6):569–573.
  13. Hench LL, Polak JM. Third-Generation Biomedical Materials. Science. 2002 February; 295(5557): 1014-17.
  14. Kretlow JD, Mikos AG. Review: Mineralization of Synthetic Polymer Scaffolds for Bone Tissue Engineering. Tissue Eng. 2007 May; 13(5):927-944.
  15. Liu CZ,  Czernuszka JT. Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology. Mater. Sci. Technol. 2007; 23(4): 379-391.
  16. Stevens MM. Biomaterials for bone tissue engineering. Materials Today. 2008 May;11(5):18-25.
  17. Liu DM. Fabrication of hydroxyapatite ceramic with controlled porosity. J Mater Sci Mater Med. 1997 April; 8(4): 227–232.
  18. Kose GT, Korkusuz F, Ozkul A, Soysal Y,  Ozdemir T, Yildiz C, Hasirci V. Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials.  2005 September; 26(25):5187–5197.
  19. Ma L, Gao C, Mao Z, Zhou J, Shen J. Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials. 2004 July; 25 (15): 2997–3004.
  20. Fu Q, Ren H, Zheng C, Zhuang C, Wu T, Qin J, Wang Z, Chen Y, Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. Journal of Biomaterials Applications. 2018 September; 33(4):477-487.
  21. Vail NK, Swain LD, Fox WC, Aufdlemorte TB, Lee G, Barlow JW. Materials for biomedical applications. Mater Des.  1999 June; 20(2-3): 123–132.
  22. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymer concepts in tissue engineering.  J Biomed Mater Res. 1998; 43(4): 422–427.
  23. Anderson JM. Biological Responses to Materials. Ann Rev Mater Res. 2001;31:81–110.
  24. Hutmacher DW.  Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21: 2529–2543.
  25. Kempen DHR, Lu L, Kim C, Zhu X, Dhert WJA, Currier BL, Yaszemski MJ. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate). J Biomed Mater Res. 2006 January; 77A(1):103–111.
  26. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends in biotechnology. 2012 Octobar;.30(10):546-54.
  27. Sittisak H, Vinai P. Tissue engineering for bone regeneration: stem cells and growth factors in biomaterial scaffolds. Asian Biomedicine. 2007 October 2007;1(3):229-38.
  28. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cellbased tissue engineering. J Bone Joint Surg Am. 2004 Jul;86-A(7):1541-58.
  29. De Mendonça Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg. 2008 January; 19(1): 204–210.
  30. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009; 18(7): 75–83.
  31. 31. Pisciotta A, Riccio M, Carnevale G, Beretti F,Affiliation Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, It⨯   Gibellini L, Maraldi T, Cavallini GM, Ferrari A, Bruzzesi G,  De Pol A. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS ONE.  2012 November; 7(11): e50542.
  32. Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, La Sala GB, Motta A,  De Pol A.Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Res Ther. 2013 May; 4(3): 53.
  33. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d’Aquino R, Tirino V, Papaccio G. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cell Transl Med. 2013 March; 2(4): 316–324.
  34. Jahanbin A, Rashed R, Alamdari DH, Koohestanian N, Ezzati A, Kazemian M, Saghafi S,  Ali Raisolsadat M. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J Oral Maxillofac Surg. 2016 April; 74(4): 829.e1–9.
  35. Monti M, Graziano A, Rizzo S, Perotti C, Del Fante C, d’Aquino R, Redi CA, Baena RR.
  36. In vitro and in vivo differentiation of progenitor stem cells obtained after mechanical digestion of human dental pulp. J Cell Physiol. 2017 June; 232(3): 548–555.
  37. Behnia A, Haghighat A, Talebi A, Nourbakhsh N, Heidari F. Transplantation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect. World J Stem Cell. 2014 September; 6(4): 505–510.
  38. Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M, Matsuo O. Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int. 2007 January; 31(10): 1191–1197
  39. Zhang W, Walboomers XF, Van Osch GJ, Van den Dolder J, Jansen JA.
  40. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A. 2008 February; 14(2): 285–294.
  41. Kraft DC, Bindslev DA, Melsen B, Abdallah BM,  Kassem M, Klein-Nulend J. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci. 2010 February; 118(1): 29–38.
  42. Chen B, Sun HH, Wang HG, Kong H, Chen FM, Yuet Q. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars. Biomaterials. 2012 July; 33(20): 5023–35.
  43. Asutay F, Polat S, Gül M, Subaşı C, Kahraman SA, Karaöz E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: micro-computed tomography and histomorphometric analysis. Arch Oral Biol. 2015 December; 60(12): 1729–1735.
  44. Cao Y, Liu Z, Xie Y, Hu J,  Wang H, Fan Z, Zhang C, Wang J, Wu CT, Wang S. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine. Stem Cell Res Ther. 2015 August; 6(1): 249.
  45. Qian J, Jiayuan W, Wenkai J, Peina W, Ansheng Z, Shukai S, Shafei Z, Jun L, Longxing N. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J. 2015 August; 48(7): 690–700.
  46. Ma L, Makino Y, Yamaza H, Yamaza H, Akiyama K, Hoshino Y, Song G, Kukita T, Nonaka T, Shi S, Yamaza T. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS ONE 2012 December; 7(12): e51777.
  47. Kang KJ, Lee MS, Moon CW, Lee JH, Yang HS, Yang YJ. In vitro and in vivo dentinogenic efficacy of human dental pulp-derived cells induced by demineralized dentin matrix and HA-TCP. Stem Cell Int. 2017; 2017: 2416254.
  48. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuir T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis. 2008 June; 14(5): 428–434.
  49. Yuan M, Zhan Y, Hu W, Li Y, Xie X, Miao N, Jin H, Zhang B. Aspirin promotes osteogenic differentiation of human dental pulp stem cells. International Journal of Molecular Medicine. 2018 October;42(4):1967-1976.
  50. Bachtiar EW,  Fatma D,  Yusuf AA, Ulfiana R. Transplantation of Dental Pulp Stem Cells in Experimental Bone Defect. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2017; 34: 94-100.
  51. Carnevale G, Pisciotta A,  Riccio M,  Bertoni L, De Biasi S,  Gibellini L,  Zordani A, Cavallini GM, La Sala GB,  Bruzzesi G,  Ferrari A, Cossarizza A, de Pol A. Human dental pulp stem cells expressing STRO‐1, c‐kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med. 2018 February;12(2):774-785.

PDF Bulajić D. et al. • MD-Medical Data 2018;11(1): 043-047

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu