md-medicaldata


Go to content

MEHANIZMI DEJSTVA FTALATA NA RAZVOJ GOJAZNOSTI/

MECHANISMS OF PHTHALATE EFFECT ON OBESITY DEVELOPMENT

Authors

 

Katarina Baralić, Marijana Ćurčić, Evica Antonijević, Biljana Antonijević, Danijela Đukić-Ćosić

Katedra za toksikologiju ,,Akademik Danilo Soldatović“, Centar za toksikološku procenu rizika, Univerzitet u Beogradu – Farmaceutski fakultet, Vojvode Stepe 450, 11221 Beograd, Srbija

 

UDK: 613.25:547584


The paper was received / Rad primljen: 14.02.2019.

Accepted / Rad prihvaćen: 18.02.2019.

 


Correspondence to:


Katarina Baralić
Katedra za toksikologiju “Akademik Danilo Soldatović”
Univerzitet u Beogradu – Farmaceutski fakultet
Vojvode Stepe 450, 11221 Beograd
Telefon: +381641686052
+381113951248
e-mail: katarinab@pharmacy.bg.ac.rs

 

 

Sažetak

 

Obezogeni (engl. Obesogens) su supstance koje potiču iz životne sredine i podstiču nastanak gojaznosti, povećavajući adipogenezu i akumulaciju lipida u organizmu. Najpoznatije supstance za koje se smatra da imaju obezogeno dejstvo su dietilstilbestrol, bisfenol A, fitoestrogeni, kao i ftalati. Ftalati (dialkil ili alkil-aril estri o-ftalne kiseline) su najčešće korišćeni plastifikatori u proizvodnji polivinil hlorida (PVC), u kome čine i do 40% mase završnog proizvoda. Usled široke primene i izloženosti ljudi, kao i potencijala da ispolje toksični efekat na reproduktivni sistem, ograničena je upotreba nekih ftalata. Sve veći broj istraživanja na eksperimentalnim životinjama govori u prilog uticaju ftalata na razvoj gojaznosti, a epidemiološkim studijama potvrđena je povezanost povećanog nivoa njihovih metabolita u urinu sa prekomernom telesnom masom. Mehanizmi obezogenog dejstva ftalata još uvek nisu dovoljno proučeni, ali se smatra da su među najznačajnijim interakcije ftalata sa receptorima povezanim sa proliferatorom peroksizoma (engl. Peroxisome Proliferator-Activated Receptors: PPAR), antiandrogeno dejstvo, ometanje tireoidne funkcije, kao i oksidativni stres. Cilj ovog rada je da dâ pregled podataka o toksičnosti ftalata sa posebnim osvrtom na mehanizme njihovog uticaja na razvoj gojaznosti.

 

 

Ključne reči:

ftalati, gojaznost, mehanizmi obezogenog dejstva

 

 

Abstract

 

Obesogens are substances originating from the environment that increase obesity development by promoting adipogenesis and lipid accumulation. The most well-known substances that have obesogenic effect are diethylstilbestrol, bisphenol A, phytoestrogens, and phthalates.
Phthalates (dialkyl, or alkyl-aryl esters of phthalic acid) are the most commonly used plasticizers in the production of polyvinyl chloride (PVC), in which they make 40% mass of the final product. Due to their wide use and exposure of humans, as well as potential toxic effects on the reproductive system, use of certain phthalates is restricted. More and more studies on experimental animals support the impact of phthalates on the development of obesity, while the correlation between increased levels of phthalate urine metabolites and overweight has been found in recent epidemiological studies. Although mechanisms of phthalate obesogenic effect are still not investigated enough, it is considered that it is caused mostly by interaction with peroxisome proliferator-activated receptors (PPAR), their antiandrogenic effect, impairment of thyroid function, and oxidative stress. Most of these effects have been shown in experiments in experimental animals, but are still not investigated enough. The aim of this paper is to present the literature data on the use and exposure to phthalates, as well as their toxicity, with a special emphasis on mechanisms of their obesogenic effect.

 

Key words:

phthalates, obesity, mechanisms of obesogenic properties

 

 

 

References:

 

  1. Chukhraiev N, Zukow W, Chukhraieva E, Unichenko A. Integrative approach to reduction of excess weight. Journal of Physical Education and Sport. 2017;17(2):563.
  2. Boričić, K., Vasić, M., Grozdanov, J., Gudelj Rakić, J., Živković Šulović, M., & Jahović Knežević, N. (2014). Rezultati istraživanja zdravlja stanovništva Srbije, 2013. godine. Beograd: Institut za javno zdravlje Srbije” Dr Milan Jovanović Batut.
  3. Newbold RR. Impact of environmental endocrine disrupting chemicals on the development of obesity. Hormones (Athens). 2010;9(3):206-17.
  4. Grün F, Blumberg B. Endocrine disrupters as obesogens. Molecular and cellular endocrinology. 2009;304(1-2):19-29.
  5. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology. 2011;127(3):204-15.
  6. Kim SH, Park MJ. Phthalate exposure and childhood obesity. Annals of Pediatric Endocrinology & Metabolism. 2014;19(2):69-75.
  7. Wittassek M, Koch HM, Angerer J, Bruning T. Assessing exposure to phthalates – The human biomonitoring approach. Molecular Nutrition & Food Research. 2011; 55: 7–31.
  8. Cartwright CD, Owen SA, Thompson IP, Burns RG. Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiology Letters. 2000;186(1):27-34.
  9. Gardner ST, Wood AT, Lester R, Onkst PE, Burnham N, Perygin DH, Rayburn J. Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. Journal of Toxicology and Environmental Health, Part A. 2016;79(2):71-82.
  10. DiGangi J, Schettler T, Cobbing M, Rossi M. Aggregate Exposures to Phthalates in Humans. Health Care Without Harm, Washmgton, DC 20009, 1-5.
  11. National Research Council. Phthalates and cumulative risk assessment: the tasks ahead. National Academies Press; 2009 Jan 19.
  12. Regulation (EC) No 2005/84 of the European Parliament and of the Council. Official Journal of the European Union 2005; L344/40.
  13. Pravilnik o ograničenjima i zabranama proizvodnje, stavljanja u promet i korišćenja hemikalija. “Službeni glasnik RS”, br. 90 od 14. oktobra 2013, 25 od 13. marta 2015, 2 od 8. januara 2016, 44 od 9. maja 2017, 36 od 10. maja 2018.
  14. 14.Chiang HC, Wang CH, Yeh SC, Lin YH, Kuo YT, Liao CW, Tsai FY, Lin WY, Chuang WH, Tsou TC. Comparative microarray analyses of mono (2-ethylhexyl) phthalate impacts on fat cell bioenergetics and adipokine network. Cell Biology and Toxicology. 2017; 1-6.
  15. Goodman M, LaKind JS, Mattison DR. Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Critical Reviews in Toxicology. 2014; 44(2):151-75.
  16. Janesick A, Blumberg B. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Research Part C: Embryo Today: Reviews. 2011; 93(1):34-50.
  17. Buser MC, Murray HE, Scinicariello F. Age and sex differences in childhood and adulthood obesity association with phthalates: analyses of NHANES 2007–2010. International Journal of Hygiene and Environmental Health. 2014; 217(6):687-94.
  18. Wang H, Zhou Y, Tang C, He Y, Wu J, Chen Y, Jiang Q. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PloS one. 2013; 8(2):e56800.
  19. Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. Journal of Hazardous Materials. 2017; 340:360-83.
  20. Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC, Corton JC. Role of PPARα in mediating the effects of phthalates and metabolites in the liver. Toxicology. 2005; 207(1):149-63.
  21. Hurst CH, Waxman DJ. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicological Sciences. 2003; 74(2):297-308.
  22. Hatch EE, Nelson JW, Stahlhut RW, Webster TF. Association of endocrine disruptors and obesity: perspectives from epidemiological studies. International Journal of Andrology. 2010; 33(2):324-32.
  23. Bility MT, Thompson JT, McKee RH, David RM, Butala JH, Vanden Heuvel JP, Peters JM. Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicological Sciences. 2004; 82(1):170-82.
  24. Pasquali R. Obesity and androgens: facts and perspectives. Fertility and Sterility. 2006; 85(5):1319-40.
  25. Lehmann, K.P., Phillips, S., Sar, M., Foster, P.M., Gaido, K.W., 2004. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicological Sciences. 2004; 81: 60–68
  26. Latini G, Del Vecchio A, Massaro M, Verrotti A, De Felice C. Phthalate exposure and male infertility. Toxicology. 2006; 226(2-3):90-8.
  27. Ema M, Miyawaki E. Adverse effects on development of the reproductive system in male offspring of rats given monobutyl phthalate, a metabolite of dibutyl phthalate, during late pregnancy. Reproductive Toxicology. 2001; 15:189–194
  28. Barlow NJ, Mcintyre BS, Foster PM. Male reproductive tract lesions at 6, 12, and 18 months of age following in utero exposure to di (n-butyl) phthalate. Toxicologic Pathology. 2004; 32(1):79-90.
  29. Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, Gray Jr LE. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological Sciences. 2000; 58(2):339-49.
  30. Gray Jr LE, Ostby J, Furr J, Price M, Veeramachaneni DR, Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicological Sciences. 2000; 58(2):350-65.
  31. Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebæk NE, Hegedüs L, Hilsted L, Juul A, Main KM. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environmental Health Perspectives. 2010; 118(10):1458.
  32. Erkekoglu P, Giray BK, Kizilgun M, Hininger-Favier I, Rachidi W, Roussel AM, Favier A, Hincal F. Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. Journal of Environmental Pathology, Toxicology and Oncology. 2012;31(2).
  33. Zhou D, Wang H, Zhang J, Gao X, Zhao W, Zheng Y. Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats. Systems Biology in Reproductive Medicine. 2010; 56(6):413-9.
  34. Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999–2006. Environmental Research. 2011; 111(5):718-26.
  35. Tran V, Tindula G, Huen K, Bradman A, Harley K, Kogut K, Calafat AM, Nguyen B, Parra K, Ye X, Eskenazi B. Prenatal phthalate exposure and 8-isoprostane among Mexican-American children with high prevalence of obesity. Journal of Developmental Origins of Health and Disease. 2017; 8(2):196-205.
  36. Ashley-Martin J, Dodds L, Arbuckle TE, Ettinger AS, Shapiro GD, Fisher M, Morisset AS, Taback S, Bouchard MF, Monnier P, Dallaire R. A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environmental Health. 2014; 13(1):84.
  37. Boberg J, Metzdorff S, Wortziger R, Axelstad M, Brokken L, Vinggaard AM, Dalgaard M, Nellemann C. Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology. 2008; 250(2-3):75-81.


PDF Baralić K. et al. • MD-Medical Data 2019;11(1): 029-034

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu