md-medicaldata


Go to content

ANALYSIS OF INTERLEUKIN-12 AND INTERLEUKIN-23 PATHWAYS TO DISTINGUISH BETWEEN IMMUNE ACTIVATION AND INFLAMMATION FUNCTIONS /

RAZDVAJANJE IZMEĐU IMUNE I INFLAMATORNE AKTIVNOSTI INTERLEUKINA-12 I INTERLEUKINA-23

Authors

 

Irena Cosic1,2, Vasilis Paspaliaris3,4, Drasko Cosic2 and George Kolios5

1AMALNA Consulting, Black Rock, Vic 3193, Australia
2RMIT University, Melbourne, Vic 3000, Australia
3Tithon Biotech Inc, San Diego, CA 92127, USA
4Vitallife Regenerative Medical Clinic, Bangkok 10110, Thailand
5Democritus University of Thrace, Alexandroupolis 68100, Greece

 

UDK: 616-002:612.017
612.017:577.112.85


The paper was received / Rad primljen: 27.01.2019.

Accepted / Rad prihvaćen: 27.01.2019.

 


Correspondence to:


Irena Cosic,
Emeritus Professor, RMIT University
Director, AMALNA Consulting,
46 Second Street, Black Rock, 3193 Victoria, Australia
18000 Niš
e-mail: icosic@amalnaconsulting.com

 

 

Abstract

 

The main organism defence against pathogens is immune system, but unfortunately its activity is always associated with unwanted inflammation. It would be beneficial, if it is possible to understand immune activation and inflammation, as well as to identify parameters that can distinguish between immune activation and inflammation. For that purpose, we have used our own nonconventional, biophysical, theoretical Resonant Recognition Model, which we applied to Interleukin-12 (IL-12) and Interleukin-23 (IL-23) pathways. We have identified the separate parameters for those two pathways, and we assigned them separately to immune activation and inflammation biological functions. These results could be used in diminishing effects of unwanted inflammation in number of health conditions.

 

 

Keywords:

Interleukin-12, Interleukin-23, Cytokine, Immune Response, Inflammation, Resonant Recognition Model.

 

 

Sažetak

 

Imunitet je glavna odbrana organizma protiv patogena, ali je nazalost uvek povezan sa nezeljenom inflamacijom. Bilo bi znacajno da se razume proces aktiviranja imunog sistema i proces inflamacije sa idejom da se odrede parametri koji mogu da naprave razliku izmedju ta dva procesa. U tom smislu smo upotrebili nas nekonvencionalni, biofizicki, teoretski Model Rezonantnog Prepoznavanja, koji smo  primenili na Interleukin-12 (IL-12) i Interleukin-23 (IL-23) bioloske signale. Odredili smo posebne parametre za ta dva bioloska signala i odvojeno smo ih pripisali procesu aktiviranja imunog sistema i procesu inflamacije. Nasi rezultati mogu da se upotrebe za smanjenje uticaja nezeljene inflamacije u velikom broju zdravstvenih problema..

 

 

Ključne reči:

Interleukin-12, Interleukin-23, Citokini, Imunitet, Inflamacija, Model Rezonantnog Prepoznavanja.

 

 

References:

 

  1. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ: IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev, 2004, 202, pp. 96-105.
  2. Watford WT, Moriguchi M, Morinobu A, O’Shea JJ: The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev, 2003, 14(5), pp. 361-368.
  3. MacDonald TT, Monteleone G; IL-12 and Th1 immune responses in human Peyer’s patches. Trends Immunol, 2001, 22(5), pp. 244-247.
  4. Brombacher F, Kastelein RA, Alber G: Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol, 2003, 24(4), pp. 207-212.
  5. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM: Development of TH1 CD4+ T Cells Through IL-12 Produced by Listeria-Induced Macrophages. Science, 1993, 260(5107), pp. 547-549, doi: 10.1126/science.8097338.
  6. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA: Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as weel as Distinct from IL-12. Immunity, 2001, 13(5), pp. 715-725, doi: 10.1016/S1074-7613(00)00070.
  7. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zeng R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal-Malefyt R, Moore KW: A Receptor for the Heterodimeric Cytokine IL-23 is Composed of IL-12Rbeta1 and a Novel Cytokine Receptor Subunit IL-23R. Journal of Immunology, 2000, 168(11), pp. 5699-5708, doi: 10.4049/jimmunol.168.11.5699.
  8. Leonard JP, Waldburger KE, Goldman SJ: Prevention of Experimental Autoimmune Encephalomyelitis by Antibodies against IL-12. Journal of Experimental Medicine, 1995, 181(1), pp. 381-386, doi: 10.1084/jem.181.1.381.
  9. Ahern PP, Izcue A, Maloy KJ, Powrie F: The interleukin-23 axis in intestinal inflammation. Immunol Rev, 2008, 226, pp. 147-159, doi: 10.1111/j.1600-065X.2008.00705.x.
  10. Yannam GR, Gutti T, Poluektova LY: IL-23 in infections, inflammation, autoimmunity and cancer: possible role in HIV-1 and AIDS. J Neuroimmune Pharmacol, 2012, 7(1), pp. 95-112, doi: 10.1007/s11481-011-9315-2.
  11. Nakayama W, Jinnin M, Tomizawa Y, Nakamura K, Kudo H, Inoue K, Makino K, Honda N, Kajihara I, Fukushima S, Ihn H: Dysregulated interleukin-23 signalling contributes to the increased collagen production in scleroderma fibroblasts via balancing microRNA expression. Rheumatology (Oxford), 2017, 56(1), pp. 145-155. doi: 10.1093/rheumatology/kew336.
  12. Filidou E, Valatas V, Drygiannakis I, Arvanitidis K, Vradelis S, Kouklakis G, Kolios G, Bamias G: Cytokine Receptor Profiling in Human Colonic Subepithelial Myofibroblasts: A Differential Effect of Th Polarization-Associated Cytokines in Intestinal Fibrosis. Inflamm Bowel Dis, 2018, 1, doi: 10.1093/ibd/izy204.
  13. Lupardus PJ, Garcia KC: The Structure of Interleukin-23 Reveals the Molecular Basis of p40 Subunit Sharing with Interleukin-12. Journal of Molecular Biology, 2008, 382(4), pp. 931-941, doi: 10.1016/j.jmb.2008.07.051.
  14. Savage LJ, Wittmann M, McGonagle D, Helliwell PS: Ustekinumab in the Treatment of Psoriasis and Psoriatic Arthritis. Rheumatol Ther, 2015, 2(1), pp. 1-16.
  15. Paton DM: Guselkumab: human monoclonal antibody against interleukin-23 for moderate to severe psoriasis. Drugs Today (Barc), 2018, 54(3), pp. 199-207, doi: 10.1358/dot.2018.54.3.2795155.
  16. Cosic I: Macromolecular Bioactivity: Is it Resonant Interaction between Macromolecules? -Theory and Applications. IEEE Trans on Biomedical Engineering, 1994, 41, pp. 1101-1114.
  17. Cosic I: Virtual spectroscopy for fun and profit. Biotechnology, 1995, 13, pp. 236-238.
  18. Cosic I: The Resonant Recognition Model of Macromolecular Bioactivity: Theory and Applications. Basel: Birkhauser Verlag, 1997.
  19. Pirogova E, Cosic I: Examination of amino acid indexes within the Resonant Recognition Model. Proc. of the 2nd Conference of the Victorian Chapter of the IEEE EMBS, 2001, pp. 124-127.
  20. Cosic I, Cosic D, Lazar K: Analysis of Tumor Necrosis Factor Function Using the Resonant Recognition Model. Cell Biochemistry and Biophysics, 2015, 11, doi: 10.1007/s12013-015-0716-3.
  21. Cosic I, Lazar K, Cosic D: Cellular Ageing - Telomere, Telomerase and Progerin analysed using Resonant Recognition Model. MD-Medical Data, 2014, 6(3), pp. 205-209.
  22. Krsmanovic V, Biquard JM, Sikorska-Walker M, Cosic I, Desgranges C, Trabaud MA, Whitfield JF, Durkin JP, Achour A, Hearn MT: Investigation Into the Cross-reactivity of Rabbit Antibodies Raised against Nonhomologous Pairs of Synthetic Peptides Derived from HIV-1 gp120 proteins. J.Peptide Res, 1998, 52(5), pp. 410-412.
  23. Cosic I, Lazar K, Cosic D: Prediction of Tubulin resonant frequencies using the Resonant Recognition Model (RRM). IEEE Trans. on NanoBioscience, 2015, 12, pp. 491-496, doi: 10.1109/TNB.2014.2365851.
  24. Cosic I, Cosic D, Lazar K: Is it possible to predict electromagnetic resonances in proteins, DNA and RNA?. Nonlinear Biomedical Physics, 2015, 3, doi: 10.1140/s40366-015-0020-6.
  25. Cosic I, Cosic D, Lazar K: Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model. International Journal of Environmental Research and Public Health, 2016, 13(7), pp. 647, doi: 10.3390/ijeprh13070647.
  26. Cosic I, Cosic D: The Treatment of Crigler-Najjar Syndrome by Blue Light as Explained by Resonant Recognition Model. EPJ Nonlinear Biomedical Physics, 2016, 4(9), doi: 10.1140/epjnbp/s40366-016-0036-6.
  27. Vojisavljevic V, Pirogova E, Cosic I: The Effect of Electromagnetic Radiation (550nm-850nm) on I-Lactate Dehydrogenase Kinetics. Internat J Radiat Biol, 2007, 83, pp. 221-230.
  28. Dotta BT, Murugan NJ, Karbowski LM, Lafrenie RM, Persinger MA: Shifting wavelength of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic’s theory of resonant recognition model for macromolecules. Naturwissenschaften, 2014, 101(2), doi: 10.1007/s00114-013-1133-3.
  29. Murugan NJ, Karbowski LM, Persinger MA: Cosic’s Resonance Recognition Model for Protein Sequences and Photon Emission Differentiates Lethal and Non-Lethal Ebola Strains: Implications for Treatment. Open Journal of Biophysics, 2014, 5, pp. 35.
  30. Karbowski LM, Murugan NJ, Persinger MA: Novel Cosic resonance (standing wave) solutions for components of the JAK-STAT cellular signalling pathway: A convergence of spectral density profiles. FEBS Open Bio, 2015, 5, pp. 245-250.
  31. Pirogova E, Istivan T, Gan E, Cosic I: Advances in methods for therapeutic peptide discovery, design and development, Current Pharmaceutical Biotechnology. Bentham Science Publishers Ltd, Netherlands ISSN: 1389-2010, 2011, 12(8), pp. 1117-1127.
  32. Cosic I, Pirogova E: Bioactive Peptide Design using the Resonant Recognition Model. Nonlinear Biomedical Physics, 2007, 1(7), doi: 10.1186/1753-4631-1-7.
  33. Cosic I, Drummond AE, Underwood JR, Hearn MTW: In vitro inhibition of the actions of basic FGF by novel 16 amino acid peptides. Molecular and Cellular Biochemistry, 1994, 130, pp. 1-9.
  34. Hearn MTW, Biquard JM, Cosic I, Krsmanovic V: Peptides Immunologically related to proteins expressed by a viral agent, having a sequence of amino acids ordered by means of protein informational method. US Patent 6, 294, 174, 2001.
  35. Achour A, Biquard JM, Krsmanovic V, M’Bika JP, Ficheux D, Sikorska M, Cozzone AJ: Induction of Human Immunodeficiency Virus (HIV-1) Envelope Specific Cell-Mediated Immunity by a Non-Homologus Synthetic Peptide. PLoS ONE, 2007, 11, pp. 1-12, doi: 10.1371/journal.pone.0001214.
  36. Pirogova E, Istivan T, Gan E, Cosic I: Advances in Methods for Therapeutic Peptide Discovery, Design and Development. Current Pharmaceutical Biotechnology, 2011, 12, pp. 1117-1127.
  37. Almansour N, Pirogova E, Coloe P, Cosic I, Istivan T: Investigation of cytotoxicity of negative control peptides versus bioactive peptides on skin cancer and normal cells: a comparative study. Future Medicinal Chemistry, 2012, 4(12), pp. 1553-1565.
  38. Istivan T, Pirogova E, Gan E, Almansour N, Coloe P, Cosic I: Biological effects of a De Novo designed myxoma virus peptide analogue: Evaluation of cytotoxicity on tumor cells. Public Library of Science (PLoS) ONE, 2011, 6(9), pp. 1-10.


PDF Cosic I. et al • MD-Medical Data 2019;11(1): 007-014

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu