md-medicaldata


Go to content

PROGRESIJA PATOHISTOLOŠKIH PROMENA NA ORGANIMA LABORATORIJSKIH PACOVA NAKON ORALNE APLIKACIJE SUSPENZIJE SEMENA RICINUSA (RICINUS COMMUNIS) /
PROGRESSION OF PATOHISTOLOGICAL CHANGES ON LABORATORY RATS ORGANS AFTER ORAL APPLICATION OF RICINUS SEEDS SUSPENSION (RICINUS COMMUNIS)

Authors

 

Radosav Radosavkić1, Dušan Vapa1, Isidora Radosavkić2, Aleksandra Ilić3, Golub Samardžija4, Miljen Maletin1

1Katedra za sudsku medicinu, Univerzitet u Novom Sadu, Medicinski fakultet
2Centar za laboratorijsku medicinu, Klinički centar Vojvodine
3Centar za patologiju, Klinički centar Vojvodine
4Katedra za patologiju, Univerzitet u Novom Sadu, Medicinski fakultet

 

UDK: 615.099:582.682.1


The paper was received 03.01.2018. Accepted: 15.02.2018.

Rad primljen 03.01.2018. Rad prihvaćen: 15.02.2018.

 


Corresponding author/ Autor za korespodenciju:


dr Radosav Radosavkić
Katedra za sudsku medicinu, Medicinski fakultet, Univerzitet u Novom Sadu
Hajduk Veljkova 3, 21 000 Novi Sad
e-mail: radosav.radosavkic@mf.uns.ac.rs

 

 

Sažetak

 

Uvod: Ricin je prirodni protein, toksin koji spada među najpristupačnije i najsmrtonosnije otrove. Nalazi se u biljci Ricinus (Ricinus communis), sa najvećim sadržajem u semenu (1-5 %). Ricin se smatra potencijalnim bioterorističkim oružjem i prema riziku za ljudsko zdravlje svrstan je u B kategoriju biološkog oružja. U novije vreme korišćen je za konstruisanje imunotoksina protiv tumorskih ćelija u terapiji maligniteta. Dokumentovana su mnoga trovanja ricinom, kako zadesna, tako i samoubilačka i ubilačka. U tu svrhu koristilo se intaktno seme ricinusa ili ekstrahovani ricin. Osnovni cilj ovog istraživanja je da se patohistološkom analizom utvrdi progresija razvoja patomorfoloških promena na organima laboratorijskih pacova u različitim vremenima žrtvovanja. Materijal i metode: Laboratorijski pacovi su istovremeno oralno tretirani suspenzijom koja je sadržala subletalnu koncentraciju ricina. Nakon žrtvovanja u precizno definisanim vremenskim intervalima, uzeti su uzorci tkiva unutrašnjih organa radi daljih analiza. Izvršena je patohistološka analiza uzoraka u cilju utvrđivanja promena izazvanim delovanjem ricina u odnosu na vreme proteklo od aplikacije suspenzije. Rezultati: Na histološkim preparatima životinja iz prve i druge eksperimentalne grupe patohistološke promene su diskretne. Kod životinja iz ostalih grupa promene su izraženije i jasno uočljive, a posebne su intenzivne kod životinja uginulih tokom izvođenja eksperimenta. Zaključak: Patohistološke promene na organima laboratorijskih pacova progrediraju tokom vremena proteklog od aplikacije suspenzije semena ricinusa, odnosno u pozitivnoj su korelaciji sa proteklim vremenom.

 

 

Ključne reči:

ricinus, ricin, laboratorijske životinje, mikroskopske promene, trovanje biljkama

 

 

Abstract

 

Introduction: Ricin is a naturally occurring protein, a toxin which belongs to the category of the most accessible and the most lethal poisons. It is obtained from the castor oil plant ( Ricinus communis), whose seeds contain its highest content (1-5%). Ricin is also thought to be a potential weapon of bioterrorism and taking into account the risk for human health, it is classified as a biological weapon category B. Lately it has been used for the construction of the immunotoxins against tumor cells in the therapy of malignant diseases. Numerous poisonings using ricin have been documented, not only accidental poisoning, but also in case of suicides and homicides. In those cases, intact ricin seeds or extracted ricin were used. The main aim of this research is to use pathohistological analysis to establish whether there was a significant difference in the development of pathomorphological changes on the organs of experimental rats at various points of sacrificing. Material and methods: Experimental rats were simultaneously orally tested by the solution which contained sublethal concentration of ricin. After sacrificing, the samples of inner organs tissue were taken in specifically defined intervals of time and used for further analysis. Pathohistological analysis of the samples of inner organ tissues was made with the purpose of establishing the changes caused by the effects of ricin in relation to time which passed from the application of the solution. Results: On histological preparations of animals from the first and second experimental groups, pathohistological changes are discrete. In animals from other groups changes are more pronounced and clearly visible and are particularly intense in animals which died during the experiment. Conclusion: Pathohistological changes on the organs of laboratory rats progress over the time that has passed since the application of the suspension of the seed of castor bean.

 

 

Key words:

ricinus, ricin, laboratory animals, microscopic changes, plant intoxication.

 

 

Reference / Literatura

 

  1. Poli M, Roy C,  Huebner K, Franz D, Jaax N. Ricin. In: Dembek Z.  Medical aspects of biological warfare. Washington: Walter Reed Army Medical Center; 2007. p. 323-35.
  2. Salihu B, Gana AK, Apuyor B. Castor Oil Plant (Ricinus communis L.): Botany, Ecology and Uses. Inter J  Sci Resear. 2014;3:1333-41.
  3. Gandhi VM, Chrian KM, Mulky MJ. Destoxification of castor seed meal by interaction with sal seed meal. J Am Oil Chem Soc. 1994;71:827–31. 
  4. Rana1 M, Dhamijal H, Prashar1 B, Sharma S. Ricinus communis L. – A Review. Intern J PharmTech Research. 2012;4(4):1706-11.
  5. Sabo T, Kronman C, Mazor O. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies. Methods Mol Biol. 2016;1403:683-94.
  6. Griffiths GD, Phillips GJ, Holley J. Inhalation toxicology of ricin preparations: animal models, prophylactic and therapeutic approaches to protection. Inhal Toxicol. 2007;19:873–87.
  7. Roy CJ, Hale M, Hartings JM, Pitt L, Duniho S. 2003. Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice. Inhal Toxicol. 2003;15:619–38.
  8. Schieltz DM, McGrath SC, McWilliams LG, Rees J, Bowen MD, Kools JJ, Dauphin LA, Gomez-Saladin E, Newton BN, Stang HL et al. Analysis of active ricin and castor bean proteins in a ricin preparation, castor bean extract, and surface swabs from a public health investigation. Forensic Sci Int. 2011;209:70–9.
  9. Skure A, Dhaduk H, Mehta D. Castor bean (Ricinus communis L.): Morphological Genetic Diversity. Saarbrücken: Lambert academic publishing; 2012.
  10. Balint GA. Ricin: the toxic protein of castor oil seeds. Toxicol. 1974;2:77-102.
  11. Bradberry SM, Dickers KJ, Rice P, Griffiths GD, Vale JA. Ricin poisoning. Toxicol Rev. 2003;22(1): 65-70.
  12. Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44:361–70.
  13. Balali-Mood M, Moshiri M. Problems of Clinical Diagnosis and Management of a Deliberate Biological Born Disease. J Bioterror Biodef. 2015;6:e113.
  14. Ishiguro M, Tomi M, Funatsu G, Funatsu M. Isolation and chemical properties of a ricin variant from castor bean. Toxicon. 1976;14:157-65.
  15. Zhan J, Zhou P. A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin. Toxicol.2003;186:119-23.
  16. Rauber A, Heard J. Castor bean toxicity re-examined: a new perspective. Vet Hum Toxicol. 1985;27:498–502.
  17. Bradberry S. Ricin and abrin. Medicine. 2012; 40(2):80-1.
  18. Pincus SH, Smallshaw JE, Song K, Berry J, Vitetta ES. Passive and active vaccination strategies to prevent ricin poisoning. Toxins. 2011; 3(9):1163-84.
  19. Audi J, Belson M, Patel M, Schier J, Osterloh J. Ricin poisoning. A comprehensive review. JAMA. 2005;294 (18):2342–51.
  20. Garber EAE. Toxicity and detection of ricin and abrin in beverages. J Food Protec. 2008;71:1875–83.
  21. Palatnick W, Tenenbein M. Hepatotoxicity from castor bean ingestion in a child. J Toxicol. Clin Toxicol. 2000;38:67-9.
  22. Ishiguro M, Tanabe S, Matori Y, Sakakibara R. Biochemical studies on oral toxicity of ricin. IV. A fate of orally administered ricin in rats. J Pharmacobiodyn. 1992;15:147–56.
  23. Aplin PJ, Eliseo T. Ingestion of castor oil plant seeds. Med J Aust. 1997;167:260-1.
  24. Alipour M, Kresimir Pucaj K, Smith M, Suntres Z. Toxicity of ricin toxin A chain in rats. Drug Chem Toxicol. 2013;36(2):224–30.
  25. Røen BT, Opstad AM, Haavind A, Tønsager J. Serial ricinine levels in serum and urine after ricin intoxication. J Anal Toxicol. 2013;37(5):313-17.
  26. Jeffrey A. Doebler J, Wiltshireb N, Mayerb T, Estepc J, Moellera R, Trauba R, Broomfieldd C, Calamaiob C, Thompsone W, Louise Pitt M. The distribution of [1251] ricin in mice following aerosol inhalation exposure. Toxicology. 1995;98:137-49.
  27. Benson JM, Gomez AP, Wolf ML, Tibbetts BM, March TH. The acute toxicity, tissue distribution, and histopathology of inhaled ricin in Sprague Dawley rats and BALB/c mice. Inhal toxicol. 2011;23(5):247-56.
  28. Kumar O, Sugendran K, Pant SC, Vijayaraghavan R. Effect of ricin on some biochemical, haematological and histopathological variables in mice. Def Sci J. 2004;54(4):493-502.
  29. Dong N, Li Z, Li Q, Wu J, Jia P, Wang Y, et al. Absorption, distribution and pathological injury in mice due to ricin poisoning via the alimentary pathway. J Toxicol Pathol. 2014;27(1):73-80.
  30. Roels S, Coopman V, Vanhaelen P, Cordonnier J. Lethal ricin intoxication in two adult dogs: toxicologic and histopathologic findings. J Vet Diagn Invest. 2010;22:466–468.
  31. Hassan I, Al-Awadi A, Salman I, Jasim N. Histological study of the effect of aqueous extraction of the castor seeds on the internal organs in male white mice. Bas J Vet Res.2016;14:54-65.
  32. Flora AD, Teel LD, Smith MA, Sinclair JF, Melton-Celsa AR, O'Brien AD. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys. PLoS One. 2013; 8(7): e69706.

PDF Radosavkić R. et al •MD-Medical Data 2018;10(1): 025-029

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu