Go to content

Main menu:











Slobodan Sekulić¹, Ksenija Gebauer-Bukurov¹, Milan Cvijanović¹, Ksenija Božić¹, Ivana Peričin-Starčević², Ljiljana Martać³.
¹Klinika za Neurologiju, Klinički centar Vojvodine, Medicinski fakultet Novi Sad, Novi Sad, Srbija
²Klinika za pedijatriju, Institut za zdravstvenu zaštitu dece i omladine Vojvodine, Medicinski fakultet Novi Sad, Novi Sad, Srbija
³Institut za biološka istraživanja „Siniša Stanković“, Beograd, Srbija


• The paper was received on 05.05.2016. / Accepted on 15.05.2016.


Correspodernce to:
Dr. Slobodan Sekulić, naučni saradnik
Klinika za neurologiju, Klinički centar Vojvodine,
Medicinski fakultet Novi Sad, Hajduk Veljkova 1-7,
21000 Novi Sad, Srbija,
telefon: 0643886715




Although EEG activity can experimentally be registered with pregnancy termination at 11 week of gestation, its clinical significance occurs in the period after 24 weeks gestation, because then is present the possibility for survival of the premature infants. The clinical significance of EEG in the neonatal age is reflected in the determination of the degree of maturity of the central nervous system, assessing the functional integrity of immature brain cortex, to identify potential epileptic regions or registration currently present epileptic activity. Technical adequate EEG examination by premature infants requires the use of a small number of electrodes. In this way is obtained the corresponding distance between the electrodes. Commonly used the electrodes are arranged as follows: C3-C4, the T3-T4, O1-O2, and Cz; can additionally be used Fp1-Fp2 or F3-F4 and bilateral ear electrode A1-A2 or mastoid M1-M2. In order to properly interpret the EEG in the neonatal period is necessary to know its rapid changes due to maturation and physiological patterns that mark the different periods. The paper presents the basic milestones in the physiological changes of the characteristic EEG in the newborn old 24 to 40 gestational weeks.



Key words

EEG, premature; newborn child





  1. Stern JM, Engel J. Atlas of EEG patterns. Philadelphia: Lippincot Williams & Wilkins; 2005.
  2. Cooper R, Winter AL, Crow HJ, Walter WG. Comparison of subcortical, cortical and scalp activity using chronicaly indwelling electrodes in man. Electroencephalogr Clin Neurophysiol 1965; 18: 217-228.
  3. Gebauer-Bukurov K, Bozic K, Sekulic S. Clinical characteristics and use of antiepileptic drugs among adolescents with uncomplicated epilepsy at a referral center in Novi Sad, Serbia. Acta Neurologica Belgica 2012; 112: 147-154.
  4. Benders MJ, Palmu K, Menache C, Borradori-Tolsa C, Lazeyras F, Sizonenko S, Dubois J, Vanhatalo S, Hüppi PS. Early brain activity relates to subsequent brain growth in premature infants. Cereb Cortex 2015; 25: 3014-24.
  5. Borkowski WJ, Bernstine RL. Electroencephalography of the fetus. Neurology 1955; 5: 362-5.
  6. Stockard-Pope JE, Werner SS, Bickford RG. Atlas of neonatal electroencephalography. 2nd ed. New York: Raven Press; 1992.
  7. American Clinical Neurophysiology Society Guideline Two: Minimum technical standards for pediatric electroecephalography. J Clin Neurophysiol 1994; 11: 6-9.
  8. Murdoch Eaton DG, Connell JA. Neonatal electroencephalography. In: Levene MI, Lilford RJ, editors. Fetal and neonatal neurology and neurosurgery. 2nd ed. Edinburgh: Churchill Livingstone; 1995. P 163-89.
  9. André M, Lamblin MD, d'Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, S Nguyen The T, Vecchierini-Blineau MF, Wallois F, Walls-Esquivel E, Plouin P. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol Clin. 2010; 40: 59-124.
  10. Husain A. Review of Neonatal EEG. Am J END Technol 2005; 45: 12-35.
  11. Clancy RR, Bergqvist ACG, Dlugos DJ. Neonatal electroencephalography. In: Ebersole JS, Pedley TA, editors. Current practice of clinical electroencephalography, third edition. Philadelphia: Lippincott Williams & Wilkins 2003; p. 160-234.
  12. Benda GI, Engel RC, Zhang YP. Prolonged inactive phases during the discontinuous pattern of prematurity in the electroencephalogram of very-low-birthweight infants. Electroencephalogr Clin Neurophysiol. 1989; 72: 189-97.
  13. Connell JA, Oozeer R, Dubowitz V.Continuous 4-channel EEG monitoring: a guide to interpretation, with normal values, in preterm infants. Neuropediatrics. 1987; 18: 138-45.
  14. Eyre JA, Nanei S, Wilkinson AR. Quantification of changes in normal neonatal EEGs with gestation from continuous five-day recordings. Dev Med Child Neurol. 1988; 30: 599-607.
  15. Grigg-Damberger MM, Coker SB, Halsey CL, Anderson CL. Neonatal burst suppression: its developmental significance. Pediatr Neurol. 1989; 5: 84-92.
  16. Hahn JS, Monyer H, Tharp BR. Interburst interval measurements in the EEGs of premature infants with normal neurological outcome. Electroencephalogr Clin Neurophysiol. 1989; 73: 410-8.
  17. Tharp BR, Scher MS, Clancy RR. Serial EEGs in normal and abnormal infants with birth weights less than 1200 grams--a prospective study with long term follow-up. Neuropediatrics. 1989; 20: 64-72.
  18. Dreyfus-Brisac C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev Psychobiol 1970; 3: 91-121.
  19. Anderson CM, Torres F. Photic driving in the early premature infant. Electroencephalogr Clin Neurophysiol 1984; 58: 302-7.
  20. Torres F, Anderson C.The normal EEG of the human newborn. J Clin Neurophysiol. 1985; 2: 89-103.
  21. Lombroso CT. Neonatal polygraphy in full-term and preterm infants: a review of normal and abnormal findings. J Clin Neurophysiol 1985; 5: 105-155.

PDF Sekulic S. et al • MD-Medical Data 2016;8(2) 095-099

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map

Back to content | Back to main menu