md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 


ANIMALNI MODELI DIJABETESA MELITUSA /

ANIMAL MODELS OF DIABETES MELLITUS

Authors

 

Milana Bosanac1, Nikola Aleksić1, Natali Rakočević1, Vladimir Laković2, Andrijana Milankov1,3, Bojana Andrejić Višnjić4, Matilda Đolai3,4, Sandra Trivunić Dajko3,5, Nemanja Gvozdenović1,3,6

1Univerzitet u Novom Sadu, Medicinski fakultet
2Specijalna bolnica za rehabilitaciju ”Junaković”, Apatin
3Klinički centar Vojvodine, Novi Sad
4Univerzitet u Novom Sadu, Medicinski fakultet, Katedra za histologiju i embriologiju
5Univerzitet u Novom Sadu, Medicinski fakultet, Katedra za patologiju.
6Univerzitet u Novom Sadu, Medicinski fakultet, Katedra za urgentnu medicinu.

 

UDK: 616.379-008.64


The paper was received / Rad primljen: 16.04.2021.

Accepted / Rad prihvaćen:23.06.2021.

 


Correspondence to:


Milana Bosanac
Medicinski fakultet Univerziteta u Novom Sadu,
Hajduk Veljkova 3, 21000 Novi Sad, Republika Srbija.
e-mail: 13782M15@mf.uns.ac.rs

 

 

Sažetak

 

 

Prevencija i lečenje dijabetes melitusa (DM) i njegovih komplikacija je važno za postizanje globalnog cilja, a to je smanjenje prevremene smrtnosti od nezaraznih bolesti za jednu trećinu do 2030. godine. Tokom godina su vršena brojna istraživanja o DM, pretežno na životinjama. Cilj našeg istraživanja je izvršiti sveobuhvatnu analizu podataka iz literature i identifikovati tipove i metodologiju animalnih modela DM: korelirati animalne modele sa tipovima DM kod čoveka; i predočiti prednosti i mane pojedinih metoda. Pretražene su elektronske baze podataka Medline, Highwire i Hinari, i to eksperimentalni i pregledni radovi. Animalni modeli DM a se dele na (i) indukovane, (ii) spontane i (iii) transgenske i nok-aut modele.  U ispitivanju protekcije beta ćelija pankreasa, patogeneze i prevencije DM1 najpogodniji su spontani animalni modeli, dok su u proučavanju terapije DM1 najpogodniji hemijski indukovani modeli. U ispitivanju lečenja DM2 najčešće su korišteni transgenski i nokaut modeli, dok se u istraživanjima insulinske rezistencije i gojaznosti kod DM2 najčešće koriste spontani modeli. Jedan od važnih zaključaka jeste da iako su veoma korisni, ne postoji idealni model, te je od velikog značaja dobro poznavati prednosti i mane svakog od modela i primeniti onaj koji najviše odgovara cilju istraživanja. 

 

 

 

Ključne reči:

dijabetes melitus; animalni modeli; aloksan; streptozotocin

 

 

 

Abstract

Prevention and treatment of diabetes mellitus (DM) and its complications are important for achieving the global goal, reducing premature mortality from non-communicable diseases by one-third by 2030. Regarding DM, numerous studies have been conducted over the years, mostly on animals. The goal of this  research is to: perform a comprehensive analysis of data from the literature and to identify the types of animal models of diabetes mellitus; determine which type of diabetes in humans corresponds to each of the animal models; present the applied methodology in the development of each  model, the mechanism of occurrence and possible advantages and disadvantages of particular methods. To find as many accessible, relevant papers  as possible, the electronic databases Medline, Highwire and Hinari were searched for both the results of experimental papers (Original Article) and data from review papers (Review Article). Models of animal diabetes are: (i) induced (experimental), (ii) spontaneous and (iii) transgenic and knock-out models. In the study of pancreatic beta-cell protection, pathogenesis and prevention of DM1, the most suitable are spontaneous animal models, while chemically induced models are the most suitable in the study of DM1 therapy. In the study of DM2 treatment, transgenic and knockout models were most often used. In contrast, in the study of the role of insulin resistance and obesity in DM2, spontaneous models were most often used. An important conclussion that can be drawn is that although DM models are beneficial, there is no ideal one, so it is essential to know the advantages and disadvantages of each model.

 

 

 


Keywords:

diabetes; animal models; alloxan; streptozotocin

 

 

 

 

References:

  1. Daniel Longnecker Anatomy and Histology of the Pancreas; 2014.
  2. Da Silva Xavier G. The cells of the islets of Langerhans. J Clin Med. 2018;7(3):54.
  3. Kaufman M, Nikitin AY, Sundberg JP. Histologic Basis of Mouse Endocrine System Development: A Comparative Analysis.Boca Raton: CRC Press;2009.
  4. Pantelić P, Kovač T, Ivković-Lazar T, Tešić D. Šećerna bolest i hipoglikemijski sindrom. U: Pejin D, urednik. Interna medicina II. Novi Sad: Futura; 2009. p.907-72.
  5. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol.  2012;8(4):228.
  6. American diabetes association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2020. Diabetes care. 2020;43(Supplement1):S14-31.
  7. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5(1):1-19.
  8. WHO.int [www.who.int]. Geneva: [updated 2021 February; cited 2021 February 21]. Available from: [https://www.who.int/news-room/events/detail/2016/04/07/default-calendar/world-health-day-2016].
  9. Al-awar A, Kupai K, Veszelka M, Sz4cs G, Attieh Z, Murlasits Z, et al. Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res. 2016;2016:9051426..
  10. Pantić J,  Volarević V, Đukić A. Eksperimentalni modeli dijabetes melitusa. Serbian Journal of Experimental and Clinical Research. 2010;12(1):29-35.
  11. Dhuria RS, Singh G, Kaur A, Kaur R, Kaur T. Current status and patent prospective of animal models in diabetic research. Adv Biomed Res. 2015;4:117.
  12. King A, Bowe J. Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016;99:1-10.
  13. Hammarström L, Hellman B, Ullberg S. On the accumulation of alloxan in the pancreatic β-cells. Diabetologia 1967;3(3):340–5.
  14. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008;51(2):216–26.
  15. Malaisse WJ. Insulin release: the receptor hypothesis. Diabetologia. 2014;57:1287–1290.
  16. Rohilla A, Ali S. Alloxan induced diabetes: mechanisms and effects. International journal of research in pharmaceutical and biomedical sciences. 2012;3(2):819-823..
  17. Čapo I. Uticaj gljive Coprinus comatus na regeneratorna svojstva Langerhansovih ostrvaca u aloksanskom dijabetesu kod pacova. [PhD dissertation on internet] Faculty of Medicine, University of Novi Sad; 2013. [cited 2021 February 26]. 113 p. Available at: http://www.uns.ac.rs/sr/doktorske/ivanCapo/disertacija.pdf.
  18. Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60. 
  19. Radha S, Vivek D, Swapnil S, Pankaj J, Sachdev Y. Experimental Models on Diabetes: A Comprehensive Review. International Journal of Advances in Pharmaceutical Sciences.2013;4:1-8.
  20. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 2015;70(1):5-47
  21. T. Szkudelski The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas; Physiol Res; 2001;50(6):537-46.
  22. Manish Pal Singh, Kamla Pathak Animal models for biological screening of anti-diabetic drugs: An overview; J. Exp. Bio. 2015;5(5):37-48.

PDF06-MD-Vol 13 No 2 Jun 2021_Bosanac et al.

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu