md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 


UPOTREBA INDEKSA ZA PROCENU POREMEĆAJA GLIKOREGULACIJE I KARDIOMETABOLIČKOG RIZIKA /

USE OF INDICES FOR THE EVALUATION OF GLUCOREGULATORY IMPAIRMENTS AND THE ASSESSMENT OF CARDIOMETABOLIC RISK

Authors

 

Andrea Zubnar1, Borislav Tapavički1, Dejana Bajić2, Nada Naumović1, David Ivanov3, Đurđa Cvjetković1, Dea Karaba Jakovljević1

1University of Novi Sad, Faculty of Medicine, Department of Physiology, Novi Sad, Serbia
2University of Novi Sad, Faculty of Medicine, Department of Biochemistry Novi Sad, Serbia
3University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia

 

UDK: 616-008.9


The paper was received / Rad primljen: 13.04.2021.

Accepted / Rad prihvaćen: 20.05.2021.

 


Correspondence to:


Andrea Zubnar, Doctor of Medicine
Teaching Assistant at Department of Physiology,
University of Novi Sad, Faculty of Medicine,
Department of Physiology,
Hajduk Veljkova 3,
21 137 Novi Sad, Serbia
Phone number: +381612432128
e-mail: andrea.zubnar@mf.uns.ac.rs

 

 

Sažetak

 

 

Metabolički sindrom predstavlja veliki problem današnjice i rizik za nastanak brojnih ozbiljnih oboljenja. Jedna od najvažnijih komponenti metaboličkog sindroma je insulinska rezistencija, te je neophodna adekvatna i pravovremena dijagnostika ovog stanja. Za procenu insulinske rezistencije mogu se koristiti različiti indeksi koji koriste laboratorijske, ali i antropometrijske parametre. Cilj ovog rada jeste ukazivanje na raznovrsnost i značaj ovih indeksa u ranom otkrivanju latentnih poremećaja metabolizma glukoze i kardiometaboličkog rizika. Kao osnovni test za otkrivanje poremećaja glikoregulacije je oralni glukoza tolerans test. Izračunavanjem indeksa moguće je ranije otkriti poremećaje metabolizma glukoze, ali je u njihovom računanju  neophodno uključiti više podataka poput nivoa insulina, lipidnog statusa, kao i antropometrijske parametre. Indeksi koji procenjuju glikoregulaciju a koriste podatke glikemije i insulinemije su HOMA indeksi, QUICK indeks, Matsuda i Stumvol indeksi. Pored toga postoje indeksi koji koriste podatke glikoregulacije kombinujući ih sa komponentama lipidnog statusa poput McAuley indeksa i TyG indeksa. Indeksi koji govore i o glikoregulaciji ali procenjuju i kardiometabolički rizik su VAI i LAP indeks. Kombinujući ove indekse stičemo daleko širu sliku o latentnim poremećajima metaboličkog sindroma, te se može mnogo više učiniti povodom prevencije oboljenja do kojih ovo stanje može dovesti.

 

 

 

Ključne reči:

metabolički sindrom, insulinska rezistencija, HOMA indeks

 

 

 

Abstract

The increasing incidence of metabolic syndrome represents one of the biggest health problems in today’s world and a risk factor for the occurence of other serious diseases. Insulin resistance is one of the crucial components of the metabolic syndrome and as such it requires an adequate and prompt diagnosis. Different indices based on laboratory and anthropometric parameters can be used to estimate the level of insulin resistance. The aim of this paper is to highlight the diversity and importance of these indices in the early detection of latent impairments in glucose metabolism and the assesment of cardiometabolic risk. Calculating some of the indices requires determining insulin level, lipid panel and anthropometric parameters. Indices that use glycemia and insulinemia are HOMA, QUICKI, Matsuda and Stumvoll indices. Indices that use a combination of glucoregulatory and lipid panel parameters to assess the degree of insulin resistance are the TyG and McAuley. VAI and LAP indices use lipid panel and anthropometric values to estimate the cardiometabolic risk. Using these indices together, we get a better insight into the impairments in glucose metabolism which may allow us to prevent the development of complications stemming from the metabolic syndrome.

 

 

 


Keywords:

metabolic syndrome, insulin resistance, HOMA index

 

 

 

 

References:

  1. Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients. 2019 Jul 19;11(7):1652.
  2. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich). 2013 Jan;15(1):14-33.
  3. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.
  4. Curic N, Ilincic B, Milic N, Cabarkapa V, Nikolic S, Medic-Stojanoska M, et al. The relationship between the vitamin serum 25(OH)D and the B12 concentrations in obese women. Minerva Med. 2018 Apr;109(2):79-87.
  5. Zubnar A, Nikolic S, Benc D, Janjic N, Maricic M, Slavic D et al. Associations of Vitamin D Level and Glucoregulatory Parameters in Type 2 Diabetes Mellitus. Serbian Journal of Experimental and Clinical Research. 2019.
  6. Łagowska K, Bajerska J, Jamka M. The Role of Vitamin D Oral Supplementation in Insulin Resistance in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018 Nov 2;10(11):1637.
  7. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013 Oct 16;13:47.
  8. Dujmović F, Stošić Z, Đerić M. Praktikum iz patološke fiziologije. 2nd ed. Novi Sad: Medicinski fakultet Novi Sad; 2004.
  9. Bonora  E, Targher G, Alberichie M, Bonadonna RC, Saggianni F, Zenere MB,  et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity. Diabetes Care. 2000 Jan;23(1):57-63.
  10. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004 Jun;27(6):1487-95.
  11. HOMA2 Calculator : Overview [Internet]. Dtu.ox.ac.uk. 2021 [cited 21 February 2021]. Available from: https://www.dtu.ox.ac.uk/homacalculator/
  12. Nikolic S, Curic N, Mijovic R, Ilincic B, Benc D. Significance and role of homeostatic model assessment in the evaluation of glucose regulation mechanisms. Medical review. 2017;70(5-6):155-61.
  13. Hrebícek J, Janout V, Malincíková J, Horáková D, Cízek L. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J Clin Endocrinol Metab. 2002 Jan;87(1):144-7.
  14. Stumvoll M, Van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001 Apr;24(4):796-7.
  15. Henríquez S, Jara N, Bunout D, Hirsch S, de la Maza MP, Leiva L, et al. Variability of formulas to assess insulin sensitivity and their association with the Matsuda index. Nutr Hosp. 2013 Sep-Oct;28(5):1594-8.
  16. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999 Sep;22(9):1462-70.
  17. Takahara M, Katakami N, Kaneto H, Noguchi M, Shimomura I. Distribution of the Matsuda Index in Japanese healthy subjects. J Diabetes Investig. 2013 Jul 8;4(4):369-71.
  18. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010 Apr;33(4):920-2.
  19. McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann Intern Med. 2003 Nov 18;139(10):802-9.
  20. Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014 Oct 20;13:146.
  21. Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol. 2014;2014:730827.
  22. Oh JY, Sung YA, Lee HJ. The visceral adiposity index as a predictor of insulin resistance in young women with polycystic ovary syndrome. Obesity (Silver Spring). 2013 Aug;21(8):1690-4.
  23. Petta S, Amato MC, Di Marco V, Cammà C, Pizzolanti G, Barcellona MR, et al. Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012 Jan;35(2):238-47.
  24. Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Charalampidis P, Livadas S, et al. Visceral adiposity index is highly associated with adiponectin values and glycaemic disturbances. Eur J Clin Invest. 2013 Feb;43(2):183-9.
  25. Nascimento JX, Chein MB, de Sousa RM, Ferreira Ados S, Navarro PA, Brito LM. Importance of lipid accumulation product index as a marker of CVD risk in PCOS women. Lipids Health Dis. 2015 Jun 24;14:62.
  26. Kahn HS. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005 Sep 8;5:26.
  27. Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison. Diabetes Care. 2006 Jan;29(1):151-3. 
  28. Chiang JK, Koo M. Lipid accumulation product: a simple and accurate index for predicting metabolic syndrome in Taiwanese people aged 50 and over. BMC Cardiovasc Disord. 2012 Sep 24;12:78.
  29. Xia C, Li R, Zhang S, Gong L, Ren W, Wang Z, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012 Sep;66(9):1035-8. 
  30. Ioachimescu AG, Brennan DM, Hoar BM, Hoogwerf BJ. The lipid accumulation product and all-cause mortality in patients at high cardiovascular risk: a PreCIS database study. Obesity (Silver Spring). 2010 Sep;18(9):1836-44.
  31. Mirmiran P, Bahadoran Z, Azizi F. Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol Metab (Seoul). 2014 Dec 29;29(4):443-9.
  32. Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL. Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinol Nutr. 2014 Dec;61(10):533-40.
  33. Navarro-González D, Sánchez-Íñigo L, Fernández-Montero A, Pastrana-Delgado J, Martinez JA. TyG Index Change Is More Determinant for Forecasting Type 2 Diabetes Onset Than Weight Gain. Medicine (Baltimore). 2016 May;95(19):e3646.
  34. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010 Jul;95(7):3347-51.
  35. Lee EY, Yang HK, Lee J, Kang B, Yang Y, Lee SH, et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016 Sep 15;15(1):155.
  36. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001 Mar;24(3):460-4.
  37. Ascaso JF, Pardo S, Real JT, Lorente RI, Priego A, Carmena R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care. 2003 Dec;26(12):3320-5
  38. Balta S, Celik T, Mikhailidis DP, Ozturk C, Demirkol S, Aparci M, et al. The Relation Between Atherosclerosis and the Neutrophil-Lymphocyte Ratio. Clin Appl Thromb Hemost. 2016 Jul;22(5):405-11.
  39. Lou M, Luo P, Tang R, Peng Y, Yu S, Huang W, et al. Relationship between neutrophil-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr Disord. 2015 Mar 2;15:9. 
  40. Huang W, Huang J, Liu Q, Lin F, He Z, Zeng Z, et al. Neutrophil-lymphocyte ratio is a reliable predictive marker for early-stage diabetic nephropathy. Clin Endocrinol (Oxf). 2015 Feb;82(2):229-33.
  41. Bahadır A, Baltacı D, Türker Y, Türker Y, Iliev D, Öztürk S, et al. Is the neutrophil-to-lymphocyte ratio indicative of inflammatory state in patients with obesity and metabolic syndrome? Anatol J Cardiol. 2015 Oct;15(10):816-22.

PDF05-MD-Vol 13 No 2 Jun 2021_Zubnar et al.

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu