
INTRODUCTION
Most of the time series signals observed in disciplines

such as biology and medicine are nonstationary. Such sig-
nals arise as a result of complex dynamics of an underlying
nonlinear system, which is often not directly accessible to an
observer. It is usually possible to characterize the states of
the system by analyzing the externally accessible signals.
For instance, in medical diagnosis, physiological signals are
routinely used to probe the state of the underlying system,
i.e., the human or a particular organ system. The complexi-
ty and low signal-to-noise ratio of real-world nonlinear sig-
nals often make it a challenging task to use them in critical
applications [1, 2, 3]. Furthermore, the vast majority of the
classical pattern classification techniques are tailored to lin-
ear analysis, and thus relatively less effective with highly
nonlinear data.

Neural networks (NNs) have recently been proposed as
a robust tool in nonlinear signal classification. They have
also been extensively studied in their ability to capture the

dynamics of a complex system via self-learned input-output
mappings. The objective of this paper is to demonstrate that
both of these capabilities provide a novel solution to the
problem of characterization of nonlinear time series data.
The existing literature proposes several NN-based solutions
to the problem. In the most ubiquitous approach, a multi-
layer perceptron-like NN is trained using the error back-
propagation algorithm [4].

The training data set consists of the time series data at
the input and the a priori known classes of the corresponding
data at the output. The NN is expected to discover the map-
ping between the input and output via supervised training,
such that it can accurately classify even previously unseen
data.

Recent research further substantiates the merits of artifi-
cial intelligence as a tool in the clinical setting. It is suggest-
ed that NN may be a better solution for nonlinear medical
decision support systems than conventional statistical tech-
niques [5, 6, 7]. These approaches  have had many successes,
but depended on the direct mapping between the input sig-
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nals and the a priori known (output) class to which each
input data belonged.

It was often found that large NNs were needed for the
task. The size of NNs depended heavily on the nature of the
particular task at hand. NNs have been used to predict or
characterize nonlinear time series [8, 9, 10, 11]. The issue of
time-variant time series prediction has been investigated in
[9].

Concepts used in NN-based time series prediction pro-
vide a solid starting point for the novel work presented in
this paper. The fundamental premise of the paper is that once
a low capacity of the NN is trained to accurately predict the
given nonlinear time series at all points, he connection-
weight-space (CWS) of the NN has captured sufficient
information on the state of the underlying system generating
the time-series. The theoretical foundation for this is provid-
ed by the Universal Approximation Theorem [12] and
Takens’s Theorem [13].

The CWS of the NN can be used as an excellent space to
characterize and dynamically track state changes of the sys-
tem. Note that the capacity of the NN should be much small-
er than the training data presented to the network,so that
pure memorization can be ruled out.

The method proposed in this paper involves two steps:
(1) NN-based time series prediction followed by (2)

analysis of the CWS. 
In this paper, a new method to conveniently track the

state of a nonlinear system through NN-based time-series
prediction followed by CWS analysis is proposed. After the
plausibility and robustness of the proposed technique was
assured by simulations on data generated from known linear
or nonlinear dynamical systems, successful application of
this method to sleep-wake rhythm was performed [14, 15, 16].
Then clinical EEG data analysis obtained from three patients
undergoing carotid endarterectomy (CEA) surgery of the
brain was conducted [17]. The proposed technique results in
diagnosing the state change in the EEG even when the tradi-
tional technique fails.

METHOD
1. Estimation of time series by neural networks
Techniques to identify linear dynamical systems have

been developed [18, 19, 20, 21]. When the time series output of
a system ...,x-1,x0,x1,... is expressed as 

xt+Σ aixt-i=et,                                   (1)
where et is a time series of Gaussian white noise with the

average of 0, it is called m-th order auto-regressive (AR)
process. When it is expressed as

xt=et+Σ biet-i ,                                  (2)
it is called n-th order moving average (MA) process.

When it is expressed as

xt+Σ aixt-i=et+Σ biet-i ,                  (3)
which is a process mixed above two processes, it is

called m, n-th order mixed auto-regressive moving average
(ARMA) process. System identification is the estimation of

parameters ai and bi , and orders m and n in such a way that
the estimation error of xt is minimized in the above model if
the system can be regarded as linear. 

In the analysis of biological and medical systems, it is
impossible to ignore their nonlinearity. Artificial neural net-
works (NNs) are mathematical models into which multi-lay-
ered structures and plasticity of the biological neural sys-
tems are incorporated. They are one of powerful approaches
to analysis of nonlinear systems. We propose a method using
NNs to identify the dynamics of the biomedical systems that
generate time series data. 

Consider a sampled time series { xn, n =1, 2, ……, N} of
length N. By Takens’s theorem [13, 23] it is theoretically pos-
sible to exactly model the time series by a nonlinear AR
process of the form:

xn= g [xn-1, xn-1, ……, xn-D].                  (4)
NNs can approximate the above function g[.] since it has

been proved that NNs with an arbitrary number of neurons
are capable of approximating any uniformly continuous
function [11, 23]. 

NN estimates a value xt from D preceding data xt-D,
……, xt-2, xt-1. NNs are composed of multiple layers, an
input layer, one or more hidden layers and an output layer,
which is shown in Figure 1. Each layer contains a number of
units. They have feedforward couplings. There is no cou-
pling between the units in the same layer. The number of
units in the input layer corresponds to the number of input
data. Input units output the input value without any calcula-
tion. Output and hidden units have multiple inputs.
Generally NN can have any number of output units. For the
present problem the number of output units is one. The
weighted sum u of the inputs ui to a unit is calculated as 

u=Σ wiui .                                    (5)
The output y of the unit is given by a linear function of u

or some monotonically increasing and saturating function
such as

y=tanh(u)                                    (6)

The coupling weights are given random values initially.
The output of NN usually has a large error to an arbitrary
input pattern. NN are trained with training patterns. In train-
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Figure 1. A multilayered neural network



113Medicinska revija   Medical review
ing phase, the target value to each input pattern is given. The
coupling weights between units are modified so that the
error of the output decreases using the steepest descent
method in the following way.

In the training phase, the target value is xt and the output
of a unit is denoted by ot . Error function F and error εt are
defined as

F= 1Σε2
t (7)

and
εt=ot-xt ,                                       (8)

where St is the set of training patterns. In order to mini-
mize the error function F, the weight wi is modified by ∆wi
given as

∆wi = - η ,                         (9)
where η is a positive constant.
The errors of output units are clear since they are the dif-

ference between the output and target values. Those of hid-
den units, however, are not specified explicitly. For the mod-
ification of coupling weights associated with hidden units,
we employ the backpropagation algorithm, which was pro-
posed for learning of multilayer perceptron [4]. In this algo-
rithm the error signal is propagated backwards, in the direc-
tion from the output layer to the input layer. The error signal
of a hidden unit is the weighted sum of the error signals of
the units to which the hidden unit outputs.

After the errors become sufficiently small, the input pat-
terns that are not used in the training phase are presented and
it is examined whether the NN can speculate with sufficient-
ly small error. It is called test phase. If this is accomplished,
it can be stated that the NN have acquired the dynamics of
the target system.

By Monte Carlo simulations on synthetic data generated
from a linear model (auto regression AR (2) model) and a
nonlinear model (Mackey-Glass model [24, 25]),the robust-
ness of the proposed technique and its plausibility in practi-
cal use was assured. 

2. Pre-analysis of data
There are many techniques previously proposed in order

to determine optimal neural networks [26], [27]. Most of them
are based on selecting the optimal structure for a network in
the context of discrete classification problems [28], [29]. As
reported in [28], the goodness of time series prediction large-
ly depends on the fact that dynamics is dominantly deter-
ministic.

The signal-to noise ratio of data from biological or med-
ical systems is often significantly low. When the NN are
trained with the sequence of random data of average value
zero, the output of the trained NN is zero to any input
because no system dynamics is included in the training data.
The output does not coincide with the target value of the
input pattern either for training data or test data.

In order to develop a model of a biomedical system form
clinical data, rigorous pre-analysis of the data is necessary.
The pre-analysis characterizes the dynamical system and
provides valuable information on its nature. In many cases
through characterization, it is possible to find out whether
the system is linear or nonlinear, deterministic or nondeter-
ministic. For this purpose various measures of time series

such as approximate entropy, auto-correlation, average
mutual information and number of false nearest neighbors
[30, 31, 32] are evaluated. It is important at this stage to under-
stand the difference between deterministic and nondetermin-
istic systems because the former can be models and pre-
dictable but the latter cannot.

A method based on Lipschitz condition [33] that appears
to work as a measure of continuity is introduced here to
investigate whether the time series is deterministic or nonde-
terministic. The continuity assessment is a useful indicator
of randomness if it is known that the deterministic compo-
nent of the underlying data is smooth.

Let x denote the input vector (i1, i2, ......,in)  and y denote
the output. Consider input vectors x1, x2, ……, xN-n and the
corresponding output y1, y2, ......,yN-n . If xi and xj are very
similar, then yi and yj are also very similar for deterministic
data, while yi and yj can be quite different for random data.
We evaluate the difference |yi-yj | for yj corresponding to all
xj in a neighborhood of each xi as a measure of randomness
of the data. The measure R is defined here as

and |∆i| xj in the neighborhood ∆i. The xrms and yrms are
root mean squared values for the data and output respective-
ly, and  is the mean length of vector xi in ndimension-
al space. Then zji is given by 

Assume that data x1, x2, ……, xN are obtained by sam-
pling a deterministic single-valued function of time. Then it
is expected from Eqs. (14) and (15) that f (zji)=0  because
yi≅ yj for all xj existing within the neighborhood ∆ i (Eq. (11))
of any xi. The value R will therefore be approximately zero
where the number of data N is large. On the other hand, if
the data are taken from random function, f (zji)≅ 1  because
yj is independent of yi. This will lead R≅1 for a large num-
ber of data. The value R for any data will take a value
between zero and one, which means the degree of random-
ness is expressed by R. It is a measure of regularity versus
randomness. Larger R values correspond to greater random-
ness and unpredictability, and smaller values to more
instances of recognizable patterns or feature in the data. 

The advantages and applications of this method are:
(1) It is simple and easy to implement;
(2) It does not require a large amount of data to analyze;
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δwi

(10)

(11)
(12)

E

(13)

(14)
(15)

Xnxrms



114 MD MEDICAL DATA Vol.2 NO 2 / Jun 2010.

(3) It can be useful in neural network modeling to ana-
lyze biomedical rhythm data, because it helps to determine
the optimal network;

(4) It can be useful in clinical data analysis.
3. Coupling weight analysis
We define the coupling weight space (CWS) of the NN

as the vector space spanned by all the coupling weights in
the NN. A point in CWS is represented by a weight vector
(WV). We carry out the coupling weight analysis in the fol-
lowing procedure in order to investigate the change of sys-
tem dynamics (Figure 2).

(P1) Divide the total data with length N into segments of

length M, with the segment overlap length L. Let the time
series data in the j-th segment be represented by xj(n), n=1,
2, ……, M and j=1, 2, ……, J, where J is the total number
of segments contained in the data of length N.

(P2) Carry out steps (P3)-(P5) for all J segments.
(P3) Consider the segment xj(n). Let NT j denote the neu-

ral network associated with the j-th segment. Initialize the
WV of NT j according to a uniform probability density func-
tion in [ -1, 1] and Wjb denote the initialized WV. 

(P4) Train the network with the data in j-th segment
using the error backpropagation algorithm. The training data
for the input is given by the set zj=(xj(n), xj(n-1), ……, xj(n-
D+1) ), and the corresponding data for the output is given by
the sample xj(n+k). Note that the training is carried out in
sequence for all the training input/output pairs, {zj, xj (n+k)}
(n=D, D+1, …,M - k). Let the learning rate be denoted by η.

(P5) The training is deemed to have completed for NT j
when all the training input/output pairs have been presented
for a predetermined number of times q of training epochs.
Once the training is over, obtain the trained WV and express
it by Wjf.

As the main outcome of steps (P1)-(P5), we get a set of
trained NNs { NT j, j=1, 2, ……, J}, represented by the end-
of training WV set given by {Wjf, j=1, 2, ……, J}. We use
the same initial WV to have the same random values, i.e.,
W1b = W2b = …… = WJb.

Due to the facts that (a) Wjf are the results obtained by
minimizing the k-step estimation error in the sense of back-
propagation learning, and (b) the number of training samples
far exceed the number of free parameters in NT j, the estimat-
ed Wjf should indeed identify the underlying system.

We propose two measures that describe the relative posi-
tions of  Wjf in the CWS and thus help us characterize/track
the states of the system under study. The concept of CWS
proposed in this paper allows us to represent each NT j as a
point in the CWS. Two different states “u” and “v” of a sys-
tem occupy two separate positions in the CWS. This separa-
tion of the two WVs can be captured in their angular separa-
tion in CWS as defined by

λuv=cosθuv= Wuv , Wvf / |Wuf | |Wvf |, (16)
where “ Wuv , Wvf ” denotes the inner product of the two

WVs Wuf and Wvf. The measure λuv has the advantage that it
inherently evaluates the amount of correlation between the
two states. However, it has the disadvantage that it only
evaluates the angular separation of the two vectors in CWS
and thus is blind to pure radial separations. Furthermore,
because cosine of θ has a very low gradient near 0 degree,
changes of θ tends to get discounted for small θ.

We define another measure, normalized vector separa-
tion (NVS), γuv , given by 

γuv = |Wuf - Wvf |/{|Wuf||Wvf |}1/2 (17)
Note that the measure γuv is dimensionless, and is sensi-

tive to both angular and radial separation of WVs. 
Analysis of synthetic data generated from a linear model

(auto regression AR (2) model) and a nonlinear model
(Mackey-Glass model [24, 25]) indicates that the NVS can
track the system down to a signal-to-noise ratio of 3.5dB.

RESULTS
1. Sleep-wake data analysis
First the application of the present approach to the sys-

tem identification of the signal source for the rhythm of
sleep and wake is described. Sleep-wake rhythm is one of
the circadian rhythms. The source activity is regulated by
homeostasis so as to keep the period constant fluctuating
simultaneously by non-rhythmic perturbations in daily life
[34].

In the measurement, 10 subjects recorded their own
Sleep hours (S) and Wake hours (W) data were taken during
three months. Due to the amount and recording period of the
data, the hours were recorded by themselves. The data may
include measurement errors, influence of external conditions
or other environmental sources. They are still useful for
preparatory basic investigation. It was observed that the data
have a certain tendency allowing to classify them into two
categories, regular (six subjects) and irregular (4 subjects).
The main interest here is the regular components of the data.
Two data from subject A and B were focused on in this
paper.

The n-th day data of Sleep and Wake are denoted by Sn
and Wn. The sum of Sn and Wn is denoted by SWn, n=1,
……, N, where N is the total days and N=91. The data are
converted to the deviation from their mean hours and scaled
by a facor h to normalize the values in the range of -1 and 1
by the equation 

xn = (SWn-24)/h ,                                   (18)
where h=6 was used.

<< <<

Figure 2. Coupling weight space analysis of neural networks
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To determine the number of input units, the degree of

randomness R was calculated for different number of input
data of two subjects A and B. The average value of R for 30
calculations were obtained, respectively, with number of
input data D=2, 3, ……, 7. The parameters α and β in Eqs.
(14) and (15) were set to 0.4 and 0.01, respectively. The R
values start with a much lower values with D=2 than ran-
dom data, increase as D increases, and then finally decrease
as D increases further. The R value for random data decreas-
es monotonically with the increase of D. When the R values
for the subjects finally decrease, they are similar to that for
random data. It is reasonable to deem that the higher dimen-
sional inputs may not represent the real dynamic properties
of the subjects. Therefore it was concluded that the optimal
number of input units is 2 for both subjects A and B.

Networks with only one hidden layer and two hidden
layers were tested with different number of hidden units.
The numbers of the units in the layers are denoted by l1 and
l2, respectively. It was found that when the network has two
hidden layers and l1 = l2 = 2 , it made the root mean squared
(RMS) error smaller than other networks. The RMS error for
each subjects with this case were in the range between 0.04
and 0.07

The network has acquired the regularity in the data. The
analysis of coupling weight space (CWS) was performed to
elucidate the system change. As the index of separation of
the different weight vectors (WVs), their angular separation
by Eq. (16) was used in this study. The angular separation λ
was more than 0.8 for Sleep+Wake data. It is speculated that
the properties of the system are considered to be maintained.
The λ value was kept almost constant for a while after fast
gradual change. Its duration is more than 20 days. It is there-
fore deemed that the dynamics of sleep-wake rhythm may
adjusted occasionally by some environmental change and
then kept in a steady state for some period.

2. EEG data analysis
Secondly the application of the present approach to EEG

analysis is described. The work described in this paper used
a clinical EEG signal acquisition system (Model 7T18,
DP1100, NEC Medical Systems, Japan) during clinical
operation. The EEG was acquired at a sampling rate of 200
samples/s and a resolution of 16 bits/sample, using the stan-
dard electrode placement by the International Standard
10/20 system [35]. 

The EEG signals were measured from three different
patients, PA-1 to PA-3, who underwent carotid endarterecto-
my (CEA) surgery at The University of Tokushima Teaching
Hospital, Tokushima, Japan. As a part of the CEA procedure,
internal carotid arteries (ICA) were systematically occluded
several times during the operation. To investigate whether
CEA can be safely performed on a given patient, an
exploratory occlusion of the right or left ICA was performed
as the first occlusion. If the results of the exploration were
acceptable, the CEA was performed on the second occlu-
sion. It is possible that some patients may develop severe
ischemic complications due to the temporary occlusions. In
order to monitor the situation, surgeons intra-operatively re-
corded EEG data from the patients. EEG data were used as
an indication of the gross level of blood perfusion in the brain.

In this study the occlusion of the ICA is associated with
three “brain states” (B1)-(B3) as

(B1): before the surgeon induced occlusion of ICA;
(B2): during the surgeon induced occlusion of ICA;
(B3): after the surgeon induced occlusion of ICA.
We attempted to estimate the brain state prevailing at a

given time, based on the proposed NN method. The data pro-
vided us with a great opportunity to investigate the clinical
feasibility of the proposed method in tracking the state of the
brain using EEG signals, while blood perfusion levels to the
tissues changed due to the occlusions. Note that in all of
three cases patients suffered from natural occlusions of one
branch of the ICA, and the CEA surgery was performed by
the surgeon to cure the desease. As a step in the surgery the
surgeon induced temporary occlusions to the required
branch of the carotid artery, making sure to collect EEG data
from the appropriate EEG electrodes.

For the patient PA-1, who suffered from left ICA com-
plete occlusion and underwent right ICA surgeon induced
occlusion, we used the EEG signals obtained from five elec-
trodes of the right side brain. Similarly we used the EEG sig-
nals from four electrodes of the left side brain for the patient
PA-2 and PA-3, who suffered from right ICA complete or
relatively mild occlusion and underwent left ICA surgeon
induced occlusion. We investigated whether the present
method can accurately model all the EEG signals. We used
the following parameters: k=1; N=210,002; M=1,002; L=0;
η=0.001; D=2. The number of hidden units was set to three.

In all experiments, steps (P1)-(P5) proposed in the previ-
ous section were followed. Then the WV set was evaluated.
For all WVs we calculated γoj using Eq. (17). Note that we
fixed u=0 in all cases; thus the system change from the seg-
ment 0 was tracked. The NN-estimated values of EEG
x(n+k)   over the domain n= D, D+1, ……, N-k were cal-
culated. As the result of the calculation of the error between
the NN-estimated values and the measured values, we con-
firmed that all the EEG signals were properly modeled with
the proposed method. The measure γoj changed reflecting the
change of the brain state during the operation.

Conclusions
A novel method using a moving average type of feedfor-

ward multilayered neural networks dealing with time series
data is presented. It can conveniently capture the states and
monitor the state changes of the underlying biomedical sys-
tems such as sleep-wake rhythm and brain states under an
surgical operation. The method proposed in this paper is
robust to observation noise. It is concluded that the initial
weight selection of the neural networks does not pose any
remarkable threat to the convergence of the coupling
weights. A relatively small size of the network is needed,
which makes the proposed method an attractive alternative
to existing techniques.

Acknowlegments
The work presented in this paper was conducted togeth-

er with Dr. Yohsuke Kinouchi, Dr. Udantha R. Abeyratne, Dr.
Masatake Akutagawa, Dr. Yousouf Cisse and Dr. Takahiro
Emoto.

^



116

The paper was received and accepted  15.03.2010

REFERENCES:

1. Elbert T, Ray MJ, Kowalik ZJ, Skinner
JE, Graf KE, Birbaumer N: Chaos and physiol-
ogy: deterministic chaos in excitable cell assem-
blies. Physiological Review. 1994; 74: 1-47.

2. Manuca R, Casdagli MC, Savit RS:
Nonstationarity in epileptic EEG and implica-
tions for neural dynamics. Math Biosci. 1998;
147: 1-22.

3. Rieke C, Mormann F, Andrzejak RG,
Kreuz T, David P, Elger CE, Lehnertz K:
Discerning nonstationarity from nonlinearity in
seizure-free and preseizure EEG recordings
from epilepsy patients. IEEE Trans Biomed
Eng. 2003; 50: 634-639.

4. Rumelhart DE, Hinton GE, Williams RJ:
Leaming internal representation by errorpropa-
gation. In: Rumelhart DE, McClelland JL, the
PDP Research Group (eds.):

Parallel distributed processing. MIT press,
Cambridge. 1986; 318-362.

5. Kirby SD, Eng P, Danter W, George CF,
Francovic T, Ruby RR, Ferguson KA: eural net-
work prediction of obstructive sleep apnea from
clinical criteria. Chest. 1999; 116: 409-415.

6. Li YC, Liu L, Chiu WT, Jian WS: Neural
network modeling for surgical decisions on
traumatic brain injury patients. Med lnfor. 2000;
57:1-9.

7. Varady P, Micsik T, Benedek S, Benyo
Z: A novel?method fbr the detection of apnea
and hypopnea events in respiration signals.
IEEE Trans Biomed Eng. 2002; 49: 936-942.

8. Matsuba I, Masui H, Hebishima S:
Optimizing multilayer neural networks using
fractal dimensions of time series data.
Proceedings of IEEE International Joint
Conference on Neural Networks. 1992; 583-
588.

9. Watanabe E, Nakasako N, Mitani Y: A
prediction method of non-stationary time series
data by using a modular structured neural net-
work. IEICE Trans Fundamentals. 1997; E80-A:
971-976.

10. Doherty S, Gomm J, Williams D:
Experiment design consideration for nonlinear
system identification using neural networks,
Computers and Chemical Engineering. 1997;
21: 327-346.

11. Yu H, Bang S: An improved time series
prediction by applying the layer-by-1ayer learn-
ing method to FIR neural networks. Trans Soc
Comput Simul lnt. 1997; 14: 1717-1729.

12. Funahashi K: On the approximate real-
ization of continuous mappings by neural net-
works. Neural Networks. 1998; 2: 183-192.

13. Takens F: Detecting strange attractors
in turbulence. In: Rand DA, Young LS (eds.)
Lecture notes in math, vo1 898. Springer-ver-
lag, Berlin. 1981.

14. Cisse Y, Kinouchi Y, Nagashino H,
Akutagawa M: Identification of homeostatic
dynamics for a circadian signal source using BP
neural networks. Innovation and Technology in
Biology and Medicine. 2000; 21: 24-32.

15. Cisse Y, Kinouchi Y, Nagashino H,
Akutagawa M: Identification of biological sig-
nal sources for circadian and cardiac cycle
rhythms using BP neural networks. Kybernetes.
2000; 29: 1112-1125.

16. Cisse Y, Kinouchi Y, Nagashino H,
Akutagawa M: BP neural networks approach
for identifying biological signal source in circa-
dian data fluctuations. IEICE Transactions on
Information and Systems. 2002; E85-D: 567-
576.

17. Emoto T, Akutagawa M, Abeyratne UR,
Nagashino H, Kinouchi Y: Tracking the states
of a nonlinear and nonstationary system in the
weight-space of artificial neural networks.
Medical and Biological Engineering and
Computing. 2006; 44: 146-159.

18. Davis MHA, Zheng WX: A new order
estimation technique for time series modeling.
IEEE Transactions on Automatic Control. 1997;
42: 400-403.

19. Tugnait J: Fitting MA models to linear
non gaussian random field using higher order
cumulants. IEEE Transactions on Signal
Processing. 1997; 45: 1045-1050.

20. Chow TWS, Fei G, Cho SY: High order
cumulants-based least squares for nonminimum-
phase system Identification. IEEE Transactions
on Industrial Electronics. 1997; 44: 707-716.

21. Oppenheim AV, Schafer RW: Discrete-
time signal processing. Prentice-Hall,
Englewood Cliffs. 1989.

22. Hornik K, Stinchombe M, White H:
Multilayer feed-forward networks are universal
approximators. Neural Networks. 1989; 2: 359-
366.

23. Packard NJ, Crutchfield JP, Farmer JD,
Shaw RS: Geometry from a time series. Phys
Rev Lett. 1980; 45: 712-716.

24. Mackey C, Glass L: Oscillation and
chaos in physio1ogical control systems.
Science. 1977; 197: 287-289.

25. Murray JD: Mathematical biology, 2nd
edn. Springer, Berlin. 1993.

26. Kulkarni DR, Pandya AS, Parikh JC:
Modeling and predicting sunspots activity --
state space reconstruction + artificial neural net-
work methods. Geophysical Research Letters.
1998; 25: 457-460.

27. Fogel DB: An information criterion for
optimal neural network selection. IEEE
Transactions on Neural Networks. 1991; 2: 490-
497.

28. Park YR, Murray T.J, Chen C:
Predicting sun spots using a layered perceptron
neural network. IEEE Transactions on Neural
Networks. 1996; 7: 501-505.

29. Faraway J, Chatfield C: Time series
forecasting with neural network: A comparative
study using the airline data. Applied Statistics
Journal of The Royal Statistical Society Series.
1988; 46: 231-250.

30. Pincus SM, Gladstone IM, Ehrenkranz
RA: A regularity statistic for medical data
analysis. Journal of Clinical Monitoring. 1991;
7: 335-345.

31. Bendat JS, Piersol AG: Random data
analysis and measurement procedures. John
Wiley and Sons, New York. 1971.

32. Kulkarni DR, Parikh JC, Pandya AS:
Dynamic predictions from time series data: An
artificial neural network approach. International
Journal of Modern Physics C. 1997; 8: 1345-
1360.

33. Morgan F: What is a surface. American
Mathematics Monthly. 1996; 103: 369-376.

34. Vander AJ, Sherman JH, Luciano DS:
Human physiology: the mechanisms of body
function. McGraw-Hill press, Auckland, 1985.

35. Japer H: Ten-twenty electrode system
of the international federation. lectroencephalo-
gr Clin Neurophysiol. 1958; 10: 371-375.

MD MEDICAL DATA Vol.2 NO 2 / Jun 2010.

Apstrakt
Predlo`ena je nova primena ve{ta~kih neuronskih mre`a (NM) za modeliranje biomed-

icinskih sistema od vremenskih serija podataka koje sistemi generi{u. Modelirani sistemi
su nelinearni i/ili nestationarni. Method se sastoji od obu~avanja NM algoritmom prosti-
ranja gre{ke unazad za predikciju vremenske serije biomedicinskog signala, i potonjeg ispi-
tivanja  prostora-te`inskih-veza (PTV) NM za ekstrakciju informacije o mehanizmu gener-
atora signala. Predlo`ena je i nova karakteristika, “normalizovana separacija vektora”
(NSV), kao mera  separacije dva proizvoljna stanja u PTV i njeno kori{}enje za pra}enje
promene stanja sistema. Tako|e je predlo`en novi metod za procenu reda sistema iz vre-
menske serije podataka sa uklju~enim {umom, izra~unavanjem stepena slu~ajnosti.
Primena metoda je ispitana sa ve{ta~kim signalima, a potom je uspe{no primenjena na
ritam budnost-spavanje i klini~ki EEG. Analiza ve{ta~kih podataka indicira da NSV mo`e
pratiti sistem sve do odnosa signal-{um od 3,5 dB. Analizirani su tromese~ni vremenski
~asovni podaci budnost-spavanje na normalnim subjektima. Primenom NM modeliran je
sistem i na|ene su promene modela. Osim toga, klini~ki podaci na tri pacijenta podvrgnu-
ta karotidnoj endararektomiji mozga pokazali su da se EEG mo`e modelirati sa malom
srednjom kvadratnom gre{kom, i da se stanje krvne perfuzije mozga mo`e pratiti putem
NSV. 


